Behavior of employability indicators in university graduates

Main Article Content

Nicole Valentina Chacón Sánchez
Daniel Esteban Casas Mateus
Luz Deicy Alvarado Nieto

Article Details

Nicole Valentina Chacón Sánchez, Universidad Distrital Francisco José de Caldas

Facultad de Ingeniería

Daniel Esteban Casas Mateus, Universidad Distrital Francisco José de Caldas

Facultad de Ingeniería

Luz Deicy Alvarado Nieto, Universidad Distrital Francisco José de Caldas

Facultad de Ingeniería

Research Articles


Introduction: This article is the result of research entitled the behavior of employability indicators in university graduates, developed at the Universidad Distrital Francisco José de Caldas in 2019.

Problem: The Emple-AP project promotes the creation of an observatory for labor insertion and the strengthening of employability in countries of the Pacific Alliance (PA), which particularly benefits Colombia, because one of its objectives with the PA is to overcome the socioeconomic inequality that exists among its inhabitants.

Objective: To identify the relationship between employability indicators through classification methods used in Artificial Intelligence.

Methodology:The indicators’ behavior description involves data pre-processing, a formal global study in statistics and a specific formal study through comparison of classification methods.

Results: Descriptions of these employability indicators show characteristics of the situation in the studied population.

Conclusion:Given the analysis of the classification model, it is determined that the diversity and disparity of the dataset makes the RandomTree model the most accurate in this research, finding that the system has characteristic behaviors of an adaptative complex system.

Originality:Through this research, employability indicators were analyzed through data mining tools, additionally the analysis presented in this article could be replicated under particular conditions in other countries of the PA.

Limitations:The information comes from the Universidad Distrital Francisco José de Caldas graduate’s office. A single source generates a limitation in the data and in the population studied.

[1] Z. A. Bakar, R. Moheman, A. Ahmad y M. M. Deris, "A Comparative Study for Outlier Detection Techniques in Data Mining," Proc. 2006 IEEE Conf. Cybernetics and Intelligent Systems, pp. 1-6, 2006. [Online]. doi:

[2] V. González Romá, J. P. Gamboa y J. Peiró, "University Graduates' Employability, Employment, Status, and Job Quality," Journal of Career Development, vol. 45, no. 2, pp. 132-149, 2018. [Online]. doi:

[3] M. R. Gabor, P. Blaga y C. Matis, "Supporting Employability by a Skills Assesment Innovative Tool - Sustainable Transnational Insights from Employers," vol. 11, no. 3360, p. 1, 2019. [Online]. doi:

[4] Ministerio de educación nacional - Colombia, "Observatorio Laboral para la Eduación," p. 1, 15 07 2019. [Online]. Available:

[5] L. Bohorquez y A. Sierra, "Aproximación al concepto de empleabilidad y sus indicadores caso proyecto EMPLEAP," p. 1. Work document, 2020.
[6] M. Felt, "Social media and the social sciences: How researchers employ Big Data analytics," Big Data & Society, vol. 3, no. 1, p. 1, 2016. [Online]. doi:

[7] B. Oliver, L. Hunt, S. Jones, A. Pearce, S. Hammer, S. Jones y B. Whelan, "The graduate employability indicators: capturing broader stakeholder perspectives on the achievement and importance of employability attributes," Proceedings of AuQF2010: Quality in Uncertain Times, vol. 22, pp. 89-95, 2010. [Online]. Available:

[8] T. Mishra, D. Kumar y S. Gupta, "Mining Students' Data for Prediction Performance," p. 1, de 2014 Fourth International Conference on Advanced Computing & Communication Technologies, 2014. [Online]. doi:

[9] B. V. Balaji y V. V. Rao, "Improved Classification Based Association Rule Mining," International Journal of Advanced Research in Computer and Communication Engineering, vol. 2, no. 5, pp. 2211-2221, 2013. [Online]. Available:

[10] G. Sughanthi y M. Ashok, "Classification Techniques for Predicting Graduate Employability," International Journal of Information Research and Review, vol. 4, no. 2, pp. 3798-3801, 2017. [Online]. doi:

[11] J. Hämäläinen, S. Jauhiainen y T. Kärkkäinen, "Comparison of Internal Clustering Validation Indices for Prototype-Based Clustering," Algorithms, vol. 10, no. 3, p. 105, 2017. [Online]. doi:

[12] J. Du, Y. Liu, Y. Yu y W. Yan, "A Prediction of Precipitation Data Based on Support Vector Machine and Particle Swarm Optimization (PSO-SVM) Algorithms," Algorithms, vol. 10, no. 2, p. 57, 2017. [Online]. doi:

[13] M. Sapaat, A. Mustapha, J. Ahmad, K. Chamili y R. Muhamad, "A Classification-Based Graduates Employability Model for Tracer Study by MOHE," p. 1, Communications in Computer and Information Science, vol. 188, 2011. [Online]. doi:

[14] T. Wang, C. Rudin, F. Doshi-Velez, Y. Liu, E. Klampfl y P. MacNeille, "A Bayesian Framework for Learning Rule Sets for Interpretable classification," Journal of Machine Learning Research, vol. 18, no. 1, pp. 2357-2393, 2017. [Online]. Available:

[15] A. A. Woya, "Employability among Statistics Graduates: Graduates’ Attributes, Competence, and Quality of Education," Education Research International, p. 7, 2019. [Online]. doi:

[16] S. d. Régules, Caos y complejidad: la realidad como un caleidoscopio, p. 1, Barcelona: Shackleton Books, 2019.

[17] Alianza del Pacífico, ¿Qué es la Alianza del Pacífico?, p. 1, 05 08 2019. [Online]. Available:

[18] Emple-AP, Observatorio para la inserción laboral y fortalecimiento de la empleabilidad en países de la alianza del pacífico, p. 1, 20 04 2019. [Online]. Available:

[19] J. C. Neffa, D. Panigo, P. Pérez y J. Persia, Actividad, empleo y desempleo: Conceptos y definiciones, p. 1, Cuarta edición ed., Buenos Aires: Centro de Estudios e Investigaciones, 2014.

[20] E. Saito y T. Pham, "A comparative institutional analysis on strategies that graduates use to show they are ‘employable’: a critical discussion on the cases of Australia, Japan, and Vietnam," Higher Education Research & Development, vol. 38, no. 2, pp. 369-382, 2019. [Online]. doi:

[21] L. E. Santana Vega, O. Gonzalez-Morales y L. F. García, "Percepción del empresariado de las competencias y características relevantes para el empleo," Revista Española de Orientación y Psicopedagogía, vol. 27, no. 1, pp. 29-46, 2016. [Online]. doi:

[22] J. Riquelme, R. Ruiz y K. Gilbert, "Minería de Datos: Conceptos y Tendencias," Revista Iberoamericana de Inteligencia Artificial, vol. 10, no. 29, pp. 11-18, 2006. [Online]. Available:

[23] L. Chen, "Statistical and Computational Methods for High-Throughput Sequencing Data Analysis of Alternative Splicing," Statistics in Biosciences, vol. 5, no. 1, pp. 138-155, 2013. [Online]. doi:

[24] Y. Cai, "Graduate employability: A conceptual framework for understanding employers' perceptions," Higher Education, pp. 457-469, 2013. [Online]. doi:

[25] S. Jun, S.-J. Lee y J.-B. Ryu, "A Divided Regression Analysis for Big Data," International Journal of Software Engineering and Its Applications, vol. 9, no.º 5, pp. 21-32, 2015. [Online]. doi:

[26] P. Daas, M. Puts, B. Buelens y P. Van den Hurk, "Big Data as a Source for Official Statistics," Journal of Official Statistics, vol. 31, no. 2, pp. 249-262, 2015. [Online]. doi:

[27] Universidad Distrital Francisco José de Caldas, Objetivos - Direccionamiento Estratégico, p. 1, 2017. [Online]. Available:

[28] J. Han, M. Kamber y J. Pei, Data mining : concepts and techniques. Michigan: Elsevier, p. 1, 2011.

[29] K. P. Nuci y P. Kefalas, "A Recommender System Based on Hierarchical Clustering for Cloud e-Learning," 11th International Symposium on Intelligent Distributed Computing, pp. 235-245, 2017. [Online]. doi:

[30] S.-a. Knight y G. Halkett, "Living Systems, Complexity & Information Systems Science," p. 1, de 21st Australasian Conference on Information Systems., 2010. [Online]. doi: