Enxerto L-arginina para á aplicação na Saúde Oral
Estudiante de Maestría en Ciencias Odontológicas, Universidad del Valle, Cali – Colombia.
email: santiago.ortodonciaestetica@gmail.com
Doctorado en Ingenieria, Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Universidad del Valle, Cali - Colombia
email: alencia.mayra@correounivalle.edu.co
Atualmente, os scaffolds são utilizados na saúde para fornecer suporte estrutural aos tecidos, orientar o cres-cimento celular, controlar colônias bacterianas e promover processos metabólicos. Vários métodos de con-formação têm sido propostos e, dependendo de suas características físicas, podem ser aplicados a diferentes abordagens na área da saúde. A revisão a seguir ilustra como os avanços nos scaffolds de quitosana influen-ciaram o campo da bioengenharia e da saúde, sua relação com aminoácidos, métodos de produção de hidrogel e quais seriam seus principais benefícios para a terapêutica de acordo com os objetivos do tratamento. Foi realizada uma revisão nas bases de dados Scopus e Web of Science e foram considerados 23 artigos originais de pesquisas in vitro, modelos animais, coortes e ensaios clínicos randomizados. Conclui-se que os scaffolds de quitosana são propícios para serem utilizados em tecidos e, dependendo do seu grau de desacetilação e peso molecular, podem ser úteis para diferentes objetivos biológicos. Não há protocolo estabelecido e não foi possível encontrar uma relação efetiva entre o peso molecular ou seu grau de desacetilação com a função biológica a ser avaliada. Mais pesquisas são necessárias para poder aplicá-lo às diferentes especialidades odontológicas.
Kumar T, Thakur A, Alexander A, Badwaik H, Tripathi DK. Modified chitosan hydrogels as drug delivery and tissue engineering systems : present status and applications. Acta Pharm Sin B [Internet]. 2012;2(5):439–49.
Crini Ã, Badot P. Application of chitosan , a natural aminopolysaccharide , for dye removal from aqueous solutions by adsorption processes using batch studies : A review of recent literature. 2008;33:399–447.
Gallardo MGC, Barbosa RC, Fook MVL, Sabino MA. Synthesis and characterization of a novel biomaterial based on chitosan modified with amino acids. Rev Mater. 2019;24(3).
Escobar-sierra DM, Perea-mesa YP. Manufacturing and evaluation of Chitosan , PVA and Aloe Vera hydrogels for skin applications • Fabricación y evaluación de hidrogeles de Quitosano , PVA y Aloe Vera para aplicaciones cutáneas. 2017;84(203):134–42.
Haugen HJ, Basu P, Sukul M, Mano JF, Reseland JE. Injectable biomaterials for dental tissue regeneration. Int J Mol Sci. 2020;21(10).
Alapure B V., Lu Y, He M, Chu CC, Peng H, Muhale F, et al. Accelerate Healing of Severe Burn Wounds by Mouse Bone Marrow Mesenchymal Stem Cell-Seeded Biodegradable Hydrogel Scaffold Synthesized from Arginine-Based Poly(ester amide) and Chitosan. Stem Cells Dev. 2018;27(23):1605–20.
Yu Y, Chen J, Chen R, Cao L, Tang W, Lin D, et al. Enhancement of VEGF-mediated angiogenesis by 2- N,6-O-sulfated chitosan-coated hierarchical PLGA scaffolds. ACS Appl Mater Interfaces. 2015;7(18):9982–90.
Reighard KP, Schoenfisch MH. Antibacterial action of nitric oxide-releasing chitosan oligosaccharides against Pseudomonas aeruginosa under aerobic and anaerobic conditions. Antimicrob Agents Chemother. 2015;59(10):6506–13.
Peng L, Chang L, Si M, Lin J, Wei Y, Wang S, et al. Hydrogel-Coated Dental Device with Adhesion-Inhibiting and Colony-Suppressing Properties. ACS Appl Mater Interfaces. 2020;12(8):9718–25.
Fukushima KA, Marques MM, Tedesco TK, Carvalho GL, Gonçalves F, Caballero-Flores H, et al. Screening of hydrogel-based scaffolds for dental pulp regeneration—A systematic review. Arch Oral Biol [Internet]. 2019;98:182–94.
Zein N, Harmouch E, Lutz J, Grado GF De, Kuchler-bopp S, Clauss F, et al. Polymer-Based Instructive Sca ff olds for Endodontic Regeneration. :1–18.
Ducret M, Montembault A, Josse J, Pasdeloup M, Celle A, Benchrih R, et al. Design and characterization of a chitosan-enriched fibrin hydrogel for human dental pulp regeneration. Dent Mater [Internet]. 2019;35(4):523–33.
Feng X, Lu X, Huang D, Xing J, Feng G, Jin G, et al. 3D porous chitosan scaffolds suit survival and neural differentiation of dental pulp stem cells. Cell Mol Neurobiol. 2014;34(6):859–70.
Huang K, Ou Q, Xie Y, Chen X, Fang Y, Huang C, et al. Halloysite Nanotube Based Scaffold for Enhanced Bone Regeneration. ACS Biomater Sci Eng. 2019;5(8):4037–47.
Jing D, Xiao J, Li X, Li Y, Zhao Z. The effectiveness of vibrational stimulus to accelerate orthodontic tooth movement: A systematic review. BMC Oral Health. 2017;17(1):1–9.
Aldosari MAM. Effects of vibration forces on maxillary expansion and orthodontic tooth movement. ProQuest Diss Theses [Internet]. 2015;(August):84. Available from:
Ellingson LC. The effect of mechanical vibration on pain and rate of tooth movement during initial orthodontic alignment [Internet]. university of nebraska medical center; 2017.
Genc G, Kocadereli I, Tasar F, Kilinc K, El S, Sarkarati B. Effect of low-level laser therapy (LLLT) on orthodontic tooth movement. Lasers Med Sci. 2013;28(1):41–7.
Domínguez A, Clarkson A, Lopez R. An In Vitro Study of the Reaction of Periodontal and Gingival Fibroblasts to Low-level Laser Irradiation : A Pilot Study. J Oral Laser Appl. 2008;8(January 2008):235–44.
Wilko MT, Wilko WM, Pulver JJ, Bissada NF, Bouquot JE. Accelerated osteogenic orthodontics technique: a 1-stage surgically facilitated rapid orthodontic technique with alveolar augmentation. J oral Maxillofac Surg. 2009;69(10):2149–59.
Raja BA, Reddy YM, Sreekanth CA., Reddy BVV, Raj GKP, Reddy R. Speedy Orthodontics: A Comprehensive Review. Int J Oral Heal Med Res. 2016;2(6):121–4.
Aristizábal-P JF. Accelerated orthodontics and express transit orthodontics (ETO)®, a contemporary concept of high efficiency Ortodoncia acelerada y ortodoncia de transito expreso (OTE)®, un concepto contemporáneo de alta eficiencia. 2014;27(1):56–73.
Iglesias-Linares A, Morford LA, Hartsfield JK. Bone Density and Dental External Apical Root Resorption. Curr Osteoporos Rep [Internet]. 2016;14(6):292–309.
Wan WK, Yang L, Padavan DT. Use of degradable and nondegradable nanomaterials for controlled release. Nanomedicine. 2007;2(4):483–509.
Nitti P, Gallo N, Palazzo B, Sannino A, Polini A, Verri T, et al. Effect of L-Arginine treatment on the in vitro stability of electrospun aligned chitosan nanofiber mats. Polym Test [Internet]. 2020;91:106758.
Scialla S, Barca A, Palazzo B, D’Amora U, Russo T, Gloria A, et al. Bioactive chitosan-based scaffolds with improved properties induced by dextran-grafted nano-maghemite and l-arginine amino acid. J Biomed Mater Res - Part A. 2019;107(6):1244–52.
Sumayya AS, Muraleedhara Kurup G. Biocompatibility of subcutaneously implanted marine macromolecules cross-linked bio-composite scaffold for cartilage tissue engineering applications. J Biomater Sci Polym Ed [Internet]. 2018;29(3):257–76.
Pant J, Sundaram J, Goudie MJ, Nguyen DT, Handa H. Antibacterial 3D bone scaffolds for tissue engineering application. J Biomed Mater Res - Part B Appl Biomater. 2019;107(4):1068–78.
Gurumurthy B, Pal P, Griggs JA, Janorkar A V. Optimization of collagen-elastin-like polypeptide-bioglass scaffold composition for osteogenic differentiation of adipose-derived stem cells. Materialia [Internet]. 2020;9(July 2019):100572.
Miller RJ, Chan CY, Rastogi A, Grant AM, White CM, Bette N, et al. Combining electrospun nanofibers with cell-encapsulating hydrogel fibers for neural tissue engineering. J Biomater Sci Polym Ed [Internet]. 2018;29(13):1625–42.
Swarnalatha B, Nair SL, Shalumon KT, Milbauer LC, Jayakumar R, Paul-Prasanth B, et al. Poly (lactic acid)-chitosan-collagen composite nanofibers as substrates for blood outgrowth endothelial cells. Int J Biol Macromol [Internet]. 2013;58:220–4.
Udhayakumar S, Shankar KG, Sowndarya S, Venkatesh S, Muralidharan C, Rose C. L-Arginine intercedes bio-crosslinking of a collagen-chitosan 3D-hybrid scaffold for tissue engineering and regeneration:: In silico, in vitro, and in vivo studies. RSC Adv [Internet]. 2017;7(40):25070–88.
Reighard KP, Hill DB, Dixon GA, Worley B V., Schoenfisch MH. Disruption and eradication of p. Aeruginosa biofilms using nitric oxide-releasing chitosan oligosaccharides. Biofouling. 2015;31(9):775–87.
Susanthy D, Sugita P, Achmadi SS. Significance of glucose addition on chitosan-glycerophosphate hydrogel properties. Indones J Chem. 2016;16(1):65–71.
Aldana AA, Barrios B, Strumia M, Correa S, Martinelli M. Dendronization of chitosan films: Surface characterization and biological activity. React Funct Polym [Internet]. 2016;100:18–25.
Nie Y, Zhang K, Zhang S, Wang D, Han Z, Che Y, et al. Nitric oxide releasing hydrogel promotes endothelial differentiation of mouse embryonic stem cells. Acta Biomater. 2017;63:190–9.
Zhang K, Chen X, Li H, Feng G, Nie Y, Wei Y, et al. A nitric oxide-releasing hydrogel for enhancing the therapeutic effects of mesenchymal stem cell therapy for hindlimb ischemia. Acta Biomater [Internet]. 2020;113(xxxx):289–304.
Yoon SJ, Yoo Y, Nam SE, Hyun H, Lee DW, Um S, et al. The cocktail effect of BMP-2 and TGF-β1 loaded in visible light-cured glycol chitosan hydrogels for the enhancement of bone formation in a rat tibial defect model. Mar Drugs. 2018;16(10):1–15.
Song WY, Liu GM, Li J, Luo YG. Bone morphogenetic protein-2 sustained delivery by hydrogels with microspheres repairs rabbit mandibular defects. Tissue Eng Regen Med. 2016;13(6):750–61.
Yun YP, Yang DH, Kim SW, Park K, Ohe JY, Lee BS, et al. Local delivery of recombinant human bone morphogenic protein-2 (rhBMP-2) from rhBMP-2/heparin complex fixed to a chitosan scaffold enhances osteoblast behavior. Tissue Eng Regen Med. 2014;11(2):163–70.
Yun YP, Kim SE, Kang EY, Kim HJ, Park K, Song HR. The effect of bone morphogenic protein-2 (BMP-2)-immobilizing heparinized-chitosan scaffolds for enhanced osteoblast activity. Tissue Eng Regen Med. 2013;10(3):122–30.
Oprenyeszk F, Sanchez C, Dubuc JE, Maquet V, Henrist C, Compère P, et al. Chitosan enriched three-dimensional matrix reduces inflammatory and catabolic mediators production by human chondrocytes. PLoS One. 2015;10(5):1–17.
Lee SY, Kamarul T. NO, carboxymethyl chitosan enhanced scaffold porosity and biocompatibility under e-beam irradiation at 50kGy. Int J Biol Macromol [Internet]. 2014;64:115–22.
Hankenson KD, Dishowitz M, Gray C, Schenker M. Angiogenesis in bone regeneration. Injury [Internet]. 2011;42(6):556–61.
Malik MH, Shahzadi L, Batool R, Safi SZ, Khan AS, Khan AF, et al. Thyroxine-loaded chitosan/carboxymethyl cellulose/hydroxyapatite hydrogels enhance angiogenesis in in-ovo experiments. Int J Biol Macromol [Internet]. 2020;145:1162–70.
Lin HY, Lin YJ. In vitro effects of low frequency electromagnetic fields on osteoblast proliferation and maturation in an inflammatory environment. Bioelectromagnetics. 2011;32(7):552–60.
Zhu A, Zhao F, Ma T. Photo-initiated grafting of gelatin/N-maleic acyl-chitosan to enhance endothelial cell adhesion, proliferation and function on PLA surface. Acta Biomater [Internet]. 2009;5(6):2033–44.
Kocak FZ, Talari ACS, Yar M, Rehman IU. In-situ forming ph and thermosensitive injectable hydrogels to stimulate angiogenesis: Potential candidates for fast bone regeneration applications. Int J Mol Sci. 2020;21(5):1–26.
Albaghdadi MS, Yang J, Brown JH, Mansukhani NA, Ameer GA, Kibbe MR. A Tailorable In Situ Light-Activated Biodegradable Vascular Scaffold. Adv Mater Technol. 2017;2(4).
Aussel A, Boiziau C, L’Azou B, Siadous R, Delmond S, Montembault A, et al. Cell and tissue responses at the interface with a chitosan hydrogel intended for vascular 5 applications: in vitro and in vivo exploration. Biomed Mater. 2019;1–25.
Wei YN, Wang QQ, Gao TT, Kong M, Yang KK, An Y, et al. 3-D culture of human umbilical vein endothelial cells with reversible thermosensitive hydroxybutyl chitosan hydrogel. J Mater Sci Mater Med. 2013;24(7):1781–7.
Sun Y, Liu Y. Synthesis and characterization of sugar-bearing chitosan derivatives as a scaffold for nitric oxide release. Adv Mater Res. 2011;160–162:1083–9.
Copyright (c) 2022 Revista Nacional de Odontología

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
O autor deve declarar que seu trabalho é original e inédito e que não foi enviado à avaliação simultânea para sua publicação por outro meio. Além disso, deve garantir que não tem impedimentos de nenhuma natureza para a concessão dos direitos previstos no contrato.
O autor se compromete a esperar o parecer da Revista Nacional de Odontología antes de considerar sua apresentação a outro meio; caso a resposta de publicação seja positiva, compromete-se em responder por qualquer ação de reivindicação, plágio ou outro tipo de reclamação que possa ocorrer por parte de terceiros.
Ainda, deve declarar que, como autor ou coautor, está completamente de acordo com os conteúdos apresentados no trabalho e ceder todos os direitos patrimoniais, isto é, sua reprodução, comunicação pública, distribuição, divulgação, transformação e demais formas de utilização da obra por qualquer meio ou procedimento, pelo termo de sua proteção legal e em todos os países do mundo, ao Fundo Editorial da Universidad Cooperativa de Colombia, de maneira gratuita e sem compensação monetária.