Modelos de Markov ocultos para la detección temprana de enfermedades cardiovasculares
Introducción: Este artículo, desarrollado entre 2022 y 2023 en el marco de Procesos Estocásticos Aplicados por el grupo SciBas de la Universidad Distrital Francisco José de Caldas, se enfoca en el papel de las cadenas de Markov ocultas (HMM) en la predicción de enfermedades cardiovasculares.
Problema: El problema abordado es la necesidad de mejorar la detección temprana de enfermedades cardíacas, y se destaca cómo las HMM pueden abordar la incertidumbre en los datos clínicos y detectar patrones complejos.
Objetivo: Evaluar el uso de modelos de Markov ocultos (HMM) en el análisis de electrocardiogramas (ECG) para la detección temprana de enfermedades cardiovasculares.
Metodología: La metodología incluye una revisión de la literatura sobre la relación entre las HMM y las enfermedades cardiovasculares, seguida de la aplicación de HMM para prevenir infartos y abordar la incertidumbre en los datos clínicos.
Resultados: Los resultados indican que las HMM son efectivas en la prevención de enfermedades cardíacas, pero su eficacia depende de la calidad de los datos. Estos resultados son prometedores, pero no universales en su aplicabilidad.
Conclusiones: En resumen, este estudio destaca la utilidad de las HMM en la detección temprana de infartos y su enfoque estadístico en medicina. Se enfatiza que no son infalibles y deben complementarse con otras opciones clínicas y métodos de evaluación en situaciones reales.
M. Franzese and A. Iuliano, “Hidden markov models,” in Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Elsevier, 2018, pp. 753–762. doi: 10.1016/B978-0-12-809633-8.20488-3.
B.-J. Yoon, “Hidden Markov Models and their Applications in Biological Sequence Analysis,” Curr Genomics, vol. 10, no. 6, pp. 402–415, Sep. 2009, doi: 10.2174/138920209789177575.
P. C. Chang, J. J. Lin, J. C. Hsieh, and J. Weng, “Myocardial infarction classification with multi-lead ECG using hidden Markov models and Gaussian mixture models,” Applied Soft Computing Journal, vol. 12, no. 10, pp. 3165–3175, Oct. 2012, doi: 10.1016/j.asoc.2012.06.004.
T. Navarrete, “Detección de anomalías en la carga de un procesador utilizando modelos ocultos de Markov.,” Tesis de maestría, Instituto tecnológico de Morelia, Morelia, Michoacán, 2007. Accessed: Sep. 11, 2023. [Online]. Available: http://www.asiat.com.mx/tomas/tesismaestria/micrositio/node2.html
DANE, “Estadísticas vitales (EEVV),” 2023. Accessed: Sep. 11, 2023. [Online]. Available: https://www.dane.gov.co/files/investigaciones/poblacion/pre_estadisticasvitales_IIItrim_2022pr.pdf
W. Gersch, P. Lilly, and E. Dong, “PVC Detection by the Heart-Beat Interval Data-Markov Chain Approach,” COMPUTERS AND BIOMEDICAL RESEARCH, vol. 8, pp. 370–378, 1975, doi: https://doi.org/10.1016/0010-4809(75)90013-0.
A. H. Kadish et al., “ACC/AHA clinical competence statement on electrocardiography and ambulatory electrocardiography. A report of the ACC/AHA/ACP-ASIM Task Force on Clinical Competence (ACC/AHA Committee to Develop a Clinical Competence Statement on Electrocardiography and Ambulatory Electrocardiography),” J Am Coll Cardiol, vol. 38, no. 7, pp. 2091–2100, 2001, doi: 10.1016/s0735-1097(01)01680-1.
R. V. Andreão, B. Dorizzi, and J. Boudy, “ECG signal analysis through hidden Markov models,” IEEE Trans Biomed Eng, vol. 53, no. 8, pp. 1541–1549, Aug. 2006, doi: 10.1109/TBME.2006.877103.
M. H. Crawford et al., “ACC/AHA guidelines for ambulatory electrocardiography: Executive summary and recommendations: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the Guidelines for Ambulatory Electrocardiography): Developed in Collaboration with the North American Society for Pacing and Electrophysiology,” Circulation, vol. 100, no. 8. Lippincott Williams and Wilkins, pp. 886–893, Aug. 24, 1999. doi: 10.1161/01.CIR.100.8.886.
Sayed Khaled, A. Khalaf, and Y. Kadah, “Arrhythmia classification based on novel distance series transform of phase space trajectories,” Annu Int Conf IEEE Eng Med Biol Soc, pp. 5195–8, 2015, doi: 10.1109/EMBC.2015.7319562.
M. Alvarez and R. Henao, “Combinación de ppca y hmm para la identificación de infarto agudo de miocardio,” Scientia Et Technica, vol. 3, no. 32, 2006, doi: https://doi.org/10.22517/23447214.6253.
P. Laguna, A. Mark, A. Goldberg, and B. Moody, “A Database for Evaluation of Algorithms for Measurement of QT and Other Waveform Intervals in the ECG,” Comput Cardiol, pp. 673–76, 1997, doi: 10.1109/CIC.1997.648140.
A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals.,” Circulation, vol. 101, no. 23, 2000, doi: 10.1161/01.cir.101.23.e215.
G. Moody and R. Mark, “The impact of the MIT-BIH Arrhythmia Database,” IEEE Engineering in Medicine and Biology Magazine, vol. 20, no. 3, pp. 45–50, 2001, doi: 10.1109/51.932724.
A. Taddei et al., “The European ST-T database: standard for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiography,” Eur Heart J, vol. 13, no. 9, pp. 1164–1172, 1992, doi: 10.1093/oxfordjournals.eurheartj.a060332.
R. Bousseljot, D. Kreiseler, and A. Schnabel, “Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet,” Biomedizinische Technik, vol. 40, pp. 317–318, 1995, doi: https://doi.org/10.1515/bmte.1995.40.s1.317.
F. Nolle, J. Badura, R. Catlett, H. Bowser, and M. Sketch, “CREI-GARD, a new concept in computerized arrhythmia monitoring systems,” Computers in Cardiology , pp. 515–518, 1987.
W. T. Cheng and K. L. Chan, “Classification of electrocardiogram using hidden Markov models,” Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. , vol. 20, no. 1, pp. 143–46, 1998, doi: 10.1109/IEMBS.1998.745850.
D. V. Filho and A. M. Cavalcanti, “modelo para análise de arritmias cardíacas usando cadeias de markov,” Proceedings of the XII SIBGRAPI , pp. 101–104, 1999, Accessed: Sep. 11, 2023. [Online]. Available: http://www.din.uem.br/sbpo/sbpo2005/pdf/arq0174.pdf
V. Kalidas and L. S. Tamil, “Detection of atrial fibrillation using discrete-state Markov models and Random Forests,” Comput Biol Med, vol. 113, Oct. 2019, doi: 10.1016/j.compbiomed.2019.103386.
P. Cheng and X. Dong, “Life-threatening ventricular arrhythmia detection with personalized features,” IEEE Access, vol. 5, pp. 14195–14203, Jul. 2017, doi: 10.1109/ACCESS.2017.2723258.
F. Nilsson, M. Stridh, and L. Sörnmo, “Frequency Tracking of Atrial Fibrillation using Hidden Markov Models,” Conf Proc IEEE Eng Med Biol Soc., pp. 1406–9, 2006, doi: 10.1109/IEMBS.2006.259677.
J. Oliveira, C. Sousa, and M. Coimbra, “Coupled hidden Markov model for automatic ECG and PCG segmentation,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, pp. 1023–27, 2017, doi: 10.1109/ICASSP.2017.7952311.
S. Petrutiu, A. V. Sahakian, and S. Swiryn, “Abrupt changes in fibrillatory wave characteristics at the termination of paroxysmal atrial fibrillation in humans,” Europace, vol. 9, no. 7, pp. 466–470, Jul. 2007, doi: 10.1093/europace/eum096.
M. A F Pimentel, M. D. Santos, D. B. Springer, and G. D. Clifford, “Heart beat detection in multimodal physiological data using a hidden semi-Markov model and signal quality indices,” Physiol Meas, vol. 36, no. 8, pp. 1717–1727, Aug. 2015, doi: 10.1088/0967-3334/36/8/1717.
A. K. Sangaiah, M. Arumugam, and G. Bin Bian, “An intelligent learning approach for improving ECG signal classification and arrhythmia analysis,” Artif Intell Med, vol. 103, Mar. 2020, doi: 10.1016/j.artmed.2019.101788.
H. Kwok, J. Coult, J. Blackwood, N. Sotoodehnia, P. Kudenchuk, and T. Rea, “A method for continuous rhythm classification and early detection of ventricular fibrillation during CPR,” Resuscitation, pp. 90–97, 2022, doi: 10.1016/j.resuscitation.2022.05.019.
L. A. Levin et al., “A cost-effectiveness analysis of screening for silent atrial fibrillation after ischaemic stroke,” Europace, vol. 17, no. 2, pp. 207–214, Dec. 2014, doi: 10.1093/europace/euu213.
G. H. Tison, J. Zhang, F. N. Delling, and R. C. Deo, “Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery,” Circ Cardiovasc Qual Outcomes, vol. 12, no. 9, Sep. 2019, doi: 10.1161/CIRCOUTCOMES.118.005289.
W. H. Tang, W. H. Ho, and Y. J. Chen, “Retrieving hidden atrial repolarization waves from standard surface ECGs,” Biomed Eng Online, vol. 17, Nov. 2018, doi: 10.1186/s12938-018-0576-3.
M. Altuve, G. Carrault, A. Beuchée, P. Pladys, and A. I. Hernández, “Online apnea–bradycardia detection based on hidden semi-Markov models,” Med Biol Eng Comput, vol. 53, no. 1, pp. 1–13, Jan. 2015, doi: 10.1007/s11517-014-1207-1.
S. Masoudi and et al., “Early detection of apnea-bradycardia episodes in preterm infants based on coupled hidden Markov model,” IEEE International Symposium on Signal Processing and Information Technology, Athens, Greece, pp. 243–48, 2013, doi: 10.1109/ISSPIT.2013.6781887.
N. Montazeri Ghahjaverestan, M. B. Shamsollahi, D. Ge, A. Beuchée, and A. I. Hernández, “Apnea bradycardia detection based on new coupled hidden semi Markov model,” Med Biol Eng Comput, 2020, doi: 10.1007/s11517-020-02277-8.
A. Sadoughi, M. B. Shamsollahi, E. Fatemizadeh, A. Beuchée, A. I. Hernández, and N. Montazeri Ghahjaverestan, “Detection of Apnea Bradycardia from ECG Signals of Preterm Infants Using Layered Hidden Markov Model,” Ann Biomed Eng, vol. 49, no. 9, pp. 2159–2169, Sep. 2021, doi: 10.1007/s10439-021-02732-z.
E. D. Übeyli, “Combining recurrent neural networks with eigenvector methods for classification of ECG beats,” Digital Signal Processing: A Review Journal, vol. 19, no. 2, pp. 320–329, 2009, doi: 10.1016/j.dsp.2008.09.002.
C. Zhang, G. Wang, J. Zhao, P. Gao, J. Lin, and H. Yang, “Patient-specific ECG classification based on recurrent neural networks and clustering technique,” 2017 13th IASTED International Conference on Biomedical Engineering (BioMed), Innsbruck, Austria, pp. 63–67, 2017, doi: 10.2316/P.2017.852-029.
Z. Xiong, M. K. Stiles, and J. Zhao, “Robust ECG signal classification for detection of atrial fibrillation using a novel neural network,” in Computing in Cardiology, IEEE Computer Society, 2017, pp. 1–4. doi: 10.22489/CinC.2017.066-138.
M. Limam and F. Precioso, “Atrial fibrillation detection and ECG classification based on convolutional recurrent neural network,” in Computing in Cardiology, IEEE Computer Society, 2017, pp. 1–4. doi: 10.22489/CinC.2017.171-325.
Y. C. Chang, S. H. Wu, L. M. Tseng, H. L. Chao, and C. H. Ko, “AF Detection by Exploiting the Spectral and Temporal Characteristics of ECG Signals with the LSTM Model,” in Computing in Cardiology, IEEE Computer Society, Sep. 2018. doi: 10.22489/CinC.2018.266.
H. W. Lui and K. L. Chow, “Multiclass classification of myocardial infarction with convolutional and recurrent neural networks for portable ECG devices,” Inform Med Unlocked, vol. 13, pp. 26–33, Jan. 2018, doi: 10.1016/j.imu.2018.08.002.
G. D. Clifford et al., “AF classification from a short single lead ECG recording: The PhysioNet/computing in cardiology challenge 2017,” in Computing in Cardiology, IEEE Computer Society, 2017, pp. 1–4. doi: 10.22489/CinC.2017.065-469.
S. Singh, S. K. Pandey, U. Pawar, and R. R. Janghel, “Classification of ECG Arrhythmia using Recurrent Neural Networks,” in Procedia Computer Science, Elsevier B.V., 2018, pp. 1290–1297. doi: 10.1016/j.procs.2018.05.045.
Li X, Qi X, Chen Z, Hou Y, Yang Y, and Liang Q, “Affective Stress Rating Method Based on Improved Hidden Markov Model,” Chinese, vol. 33, no. 3, pp. 533–538, 2016.
C. Ying, Z. Xin, and C. Wenxi, “Automatic sleep staging based on ECG signals using hidden Markov models,” Annu Int Conf IEEE Eng Med Biol Soc ., pp. 530–3, 2015, doi: 10.1109/EMBC.2015.7318416.
F. Sandberg, M. Stridh, and L. Sörnmo, “Frequency tracking of atrial fibrillation using hidden Markov models,” IEEE Trans Biomed Eng, vol. 55, no. 2, pp. 502–511, Feb. 2008, doi: 10.1109/TBME.2007.905488.
L. Rincón, “Introducción a los procesos estocásticos,” UNAM, México, 2011. [Online]. Available: http://www.matematicas.unam.mx/lars
A. Alaa, S. Hu, and M. Schaar, “Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis,” International Conference on Machine Learning , pp. 60–69, 2017, doi: https://doi.org/10.48550/arXiv.1705.05267.
J. Bilmes, “A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models,” International computer science institute, vol. 4, no. 510, p. 126, 1998, Accessed: Sep. 11, 2023. [Online]. Available: https://f.hubspotusercontent40.net/hubfs/8111846/Unicon_October2020/pdf/bilmes-em-algorithm.pdf
L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989, doi: 10.1109/5.18626.
A. Cohen, “Hidden Markov models in biomedical signal processing,” Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Biomedical Engineering Towards the Year 2000 and Beyond, vol. 3, pp. 1145–50, 1998, doi: 10.1109/IEMBS.1998.747073.
Derechos de autor 2023 Ingeniería Solidaria

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Compromiso ético y cesión de derechos
El autor debe declarar que su trabajo es original e inédito y que no se ha postulado a evaluación simultánea para su publicación por otro medio. Además, debe asegurar que no tiene impedimentos de ninguna naturaleza para la concesión de los derechos previstos en el contrato.
El autor se compromete a esperar el resultado de evaluación de la revista Ingeniería Solidaria, antes de considerar su presentación a otro medio; en caso de que la respuesta de publicación sea positiva, adicionalmente, se compromete a responder por cualquier acción de reivindicación, plagio u otra clase de reclamación que al respecto pudiera sobrevenir por parte de terceros.
Asimismo, debe declarar que, como autor o coautor, está de acuerdo por completo con los contenidos presentados en el trabajo y ceder todos los derechos patrimoniales, es decir, su reproducción, comunicación pública, distribución, divulgación, transformación, puesta a disposición y demás formas de utilización de la obra por cualquier medio o procedimiento, por el término de su protección legal y en todos los países del mundo, al Fondo Editorial de la Universidad Cooperativa de Colombia, de manera gratuita y sin contraprestación presente o futura.