Microdispositivos : herramientas para aplicaciones médicas
Universidad del Cauca. Grupo de investigación en Automática. Facultad de Electrónica y Telecomunicaciones.
email: cfjohn@unicauca.edu.co
Universidad del Cauca. Grupo de investigación en Automática. Facultad de Electrónica y Telecomunicaciones
email: avivas@unicauca.edu.co
Resumen: El presente artículo realiza una revisión de la literatura sobre los últimos avances en cuanto a los micro dispositivos para aplicaciones médicas. El objetivo es mostrar un panorama general de los últimos dispositivos y sus aplicaciones, así como los futuros vectores de desarrollo en el área. Se realizó una búsqueda de alrededor de 170 artículos, la mayoría de ellos publicados entre los años 2015 y 2021, de los cuales se eligieron 53 al ser los de mayor actualidad e impacto en los campos de investigación referidos a la administración de fármacos, la cirugía mínimamente invasiva, y las intromisiones craneales y vasculares. Se concluye que, si bien los micro dispositivos están en una etapa avanzada de investigación, aún tienen muchos desafíos por solucionar, lo cual no ha permitido completar en muchos casos las pruebas clínicas. Uno de los grandes desafíos futuros es incrementar la precisión en locomoción y conseguir que los dispositivos puedan realizar tareas más complejas con ayuda de dispositivos electrónicos de menor escala.
Shibata, J., Ishihara, S., Tada, N., Kawai, K., Tsuno, N., Yamaguchi, H., Sunami, E., Kitayama, J., and Watanabe, T. “Surgical stress response after colorectal resection: a comparison of robotic, laparoscopic, and open surgery,” Techniques in Coloproctology, vol. 19, no. 5, pp. 275–280, Mayo 2015. DOI: https://doi.org/10.1007/s10151-014-1263-4. Available: https://link.springer.com/article/10.1007/s10151-014-1263-4
Li, J., Ávila, E., Gao, W., Zhang, L., and Wang, J. “Micro/nanorobots for Biomedicine: Delivery, surgery, sensing, and detoxification,” Science Robotics, vol. 2, no. 4, Marzo 2017. DOI: 10.1126/scirobotics.aam6431. Available: https://www.science.org/doi/abs/10.1126/scirobotics.aam6431
Nezhat, C. and Lakhi, N. “Learning Experiences in Robotic-Assisted Laparoscopic Surgery,” Best Practice & Research Clinical Obstetrics & Gynaecology, vol. 35, pp. 20–29, Agosto 2016. DOI: https://doi.org/10.1016/j.bpobgyn.2015.11.009. Available: https://www.sciencedirect.com/science/article/abs/pii/S1521693415002217
Simaan, N., Yasin, R., and Wang, L. “Medical Technologies and Challenges of Robot-Assisted Minimally Invasive Intervention and Diagnostics,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, no. 1, pp. 465–490, Mayo 2018. DOI: https://doi.org/10.1146/annurev-control-060117-104956. Available: https://www.annualreviews.org/doi/abs/10.1146/annurev-control-060117-104956
Sitti, M., Ceylan, H., Hu, W., Giltinan, J., Turan, M., Yim, S., and Diller, E. “Biomedical Applications of Untethered Mobile Milli/Microrobots,” Proceedings of the IEEE, vol. 103, no. 2, pp. 205–224, Febrero 2015. DOI: 10.1109/JPROC.2014.2385105. Available: https://ieeexplore.ieee.org/abstract/document/7067029
Wang, J. and Gao, W. “Nano/microscale motors: Biomedical opportunities and challenges,” ACS Nano, vol. 6, no. 7. pp. 5745–5751, Julio 2012. DOI: https://doi.org/10.1021/nn3028997. Available: https://pubs.acs.org/doi/abs/10.1021/nn3028997
Montero, A., Hervás, A., Morera, R., Sancho, S., Córdoba, S., Corona, J. A., and Ramos, A. “Control de síntomas crónicos: Efectos secundarios del tratamiento con Radioterapia y Quimioterapia”. Oncología (Barcelona), 28(3), 41-50. 2005. Available: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=s0378-48352005000300008
Freeman, A. I., and Mayhew, E. “Targeted drug delivery”. Cancer, 58(S2), 573-583. 1986. DOI: https://doi.org/10.1002/1097-0142(19860715)58:2+<573::AID-CNCR2820581328>3.0.CO;2-C. Available: https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.1002/1097-0142(19860715)58:2+%3C573::AID-CNCR2820581328%3E3.0.CO;2-C
Chen, Y., Kosmas, P., and Wang, R. “Conceptual design and simulations of a nano-communication model for drug delivery based on a transient microbot system,” The 8th European Conference on Antennas and Propagation, 2014, pp. 63-67, DOI: 10.1109/EuCAP.2014.6901693. Available: https://ieeexplore.ieee.org/document/6901693
Chahibi, Y., Pierobon, M., Song, S., and Akyildiz, I. “A molecular communication system model for particulate drug delivery systems,” IEEE Trans. Biomed. Eng., vol. 60, no. 12, pp. 3468–3483, Dec. 2013. DOI: 10.1109/TBME.2013.2271503. Available: https://ieeexplore.ieee.org/abstract/document/6548006
Chen, Y., Kosmas, P., Anwar, P. S., and Huang, L. “A touch-communication framework for drug delivery based on a transient microbot system”. IEEE transactions on nanobioscience, vol. 14, no. 4, pp. 397-408, June 2015, DOI: 10.1109/TNB.2015.2395539. DOI: 10.1109/TNB.2015.2395539. Available: https://ieeexplore.ieee.org/abstract/document/7021884
Day, P., Eason, E. V., Esparza, N., Christensen, D., and Cutkosky, M. “Microwedge machining for the manufacture of directional dry adhesives” Journal of Micro and Nano-Manufacturing, 1(1). 2013. DOI: https://doi.org/10.1115/1.4023161. Available: https://asmedigitalcollection.asme.org/micronanomanufacturing/article-abstract/1/1/011001/366859/Microwedge-Machining-for-the-Manufacture-of
Christensen, D. L., Hawkes, E. W., Suresh, S. A., Ladenheim, K., and Cutkosky, M. R. “μTugs: Enabling microrobots to deliver macro forces with controllable adhesives”. In 2015 IEEE International Conference on Robotics and Automation (ICRA) (pp. 4048-4055). IEEE. 2015. DOI: 10.1109/ICRA.2015.7139765. Available: https://ieeexplore.ieee.org/abstract/document/7139765
Yue, C., Guo, S., Li, M., and Li, Y. “Characteristics evaluation of a biomimetic microrobot for a father-son underwater intervention robotic system”. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 171-176). IEEE. 2015. DOI: 10.1109/IROS.2015.7353370. Available: https://ieeexplore.ieee.org/abstract/document/7353370
Iddan, G., Meron, G., Glukhovsky, A., and Swain, P. “Wireless capsule endoscopy”. Nature, 405(6785), 417-417. 2000. DOI: 10.1038/35013140.
Pennazio M. “Capsule endoscopy: where are we after 6 years of clinical use?” Dig Liver Dis 38, 867-878. 2006. DOI: https://doi.org/10.1016/j.dld.2006.09.007. Available: https://www.sciencedirect.com/science/article/abs/pii/S1590865806005019
Rey JF, Ogata H, Hosoe N. “Blinded nonrandomized comparative study of gastric examination with a magnetically guided capsule endoscope and standard videoendoscope”. Gastrointest Endosc. 2012;75(2):373–81. DOI: https://doi.org/10.1016/j.gie.2011.09.030. Available: https://www.sciencedirect.com/science/article/abs/pii/S0016510711022188
Liao Z, Duan XD, Xin L. “Feasibility and safety of magnetic-controlled capsule endoscopy system in examination of human stomach: a pilot study in healthy volunteers”. J Interv Gastroenterol. 2012;2(4):155–60. DOI: 10.4161/jig.23751. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3655386/
Rahman M, Akerman S, DeVito B, “Comparison of the diagnostic yield and outcomes between standard 8 h capsule endoscopy and the new 12 h capsule endoscopy for investigating small bowel pathology”. World J Gastroenterol. 2015;21(18):5542–7. DOI: 10.3748/wjg.v21.i18.5542. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427676/
Farhadi, H., Atai, J., Skoglund, M., Nadimi, E. S., Pahlavan, K., and Tarokh, V. “An adaptive localization technique for wireless capsule endoscopy”. In 2016 10th International Symposium on Medical Information and Communication Technology (ISMICT) (pp. 1-5). IEEE. 2016. DOI: 10.1109/ISMICT.2016.7498884. Available: https://ieeexplore.ieee.org/abstract/document/7498884
Dong, X., and Sitti, M. “Planning spin-walking locomotion for automatic grasping of microobjects by an untethered magnetic microgripper”. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 6612-6618). IEEE. 2017. DOI: 10.1109/ICRA.2017.7989782. Available: https://ieeexplore.ieee.org/abstract/document/7989782
Seliktar, D. “Designing Cell-Compatible Hydrogels for Biomedical Applications”. Science, 336, 1124-1128. 2012. DOI: 10.1126/science.1214804. Available: https://www.science.org/doi/abs/10.1126/science.1214804
Dong, X., and Sitti, M. “Planning spin-walking locomotion for automatic grasping of microobjects by an untethered magnetic microgripper”. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 6612-6618). IEEE. 2017. DOI: 10.1109/ICRA.2017.7989782. Available: https://ieeexplore.ieee.org/abstract/document/7989782
Zhang, L., Huang, H., Chen, L., Li, X., Li, Y., and Huang, J. “A magnetically controlled micro-robot with multiple side flagella”. In 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (pp. 544-549). IEEE. 2017. DOI: 10.1109/NEMS.2017.8017081. Available: https://ieeexplore.ieee.org/abstract/document/8017081
Jeong, S., Choi, H., Cha, K., Li, J., Park, J., and Park, S. “Enhanced locomotive and drilling microrobot using precessional and gradient magnetic field,” Sens. Actuators Phys., vol. 171, no. 2, pp. 429–435, Nov. 2011. DOI: https://doi.org/10.1016/j.sna.2011.08.020. Available: https://www.sciencedirect.com/science/article/abs/pii/S092442471100505X
Jeon, S., Jang, G., and Lee, W. S. “Drug-enhanced unclogging motions of a double helical magnetic micromachine for occlusive vascular diseases,” IEEE Trans. Magn., vol. 50, no. 11, pp. 1–4, Nov. 2014. DOI: 10.1109/TMAG.2014.2320580. Available: https://ieeexplore.ieee.org/abstract/document/6971520
Kim, S. H., and Ishiyama, K. “Magnetic robot and manipulation for active-locomotion with targeted drug release,” IEEE/ASME Trans. Mechatron., vol. 19, no. 5, pp. 1651–1659, Oct. 2014. DOI: 10.1109/TMECH.2013.2292595. Available: https://ieeexplore.ieee.org/abstract/document/6679255
Nam, J., Lee, W., Kim, J., and Jang, G. “Magnetic helical robot for targeted drug-delivery in tubular environments”. IEEE/ASME Transactions on Mechatronics, 22(6), 2461-2468. 2017. DOI: 10.1109/TMECH.2017.2761786. Available: https://ieeexplore.ieee.org/abstract/document/8063941
Leclerc, J., Ramakrishnan, A., Tsekos, N. V., and Becker, A. T. “Magnetic hammer actuation for tissue penetration using a millirobot”. IEEE Robotics and Automation Letters, 3(1), 403-410. 2017. DOI: 10.1109/LRA.2017.2739805. Available: https://ieeexplore.ieee.org/abstract/document/8010400
Wang, X., Cai, J., Sun, L., Zhang, S., Gong, D., Li, X., and Zhang, D. “Facile fabrication of magnetic microrobots based on spirulina templates for targeted delivery and synergistic chemo-photothermal therapy”. ACS applied materials & interfaces, 11(5), 4745-4756. 2019. DOI: https://doi.org/10.1021/acsami.8b15586. Available: https://pubs.acs.org/doi/abs/10.1021/acsami.8b15586
Feng, Y., Feng, L., Dai, Y., Bai, X., Zhang, C., Chen, Y., and Arai, F. “A novel and controllable cell-based microrobot in real vascular network for target tumor therapy”. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2828-2833). IEEE. 2020. DOI: 10.1109/IROS45743.2020.9341774. Available: https://ieeexplore.ieee.org/abstract/document/9341774
Zhang, K., Qiu, C., and Dai, J. S. “An extensible continuum robot with integrated origami parallel modules”. Journal of Mechanisms and Robotics, 8(3), 031010. 2016. DOI: https://doi.org/10.1115/1.4031808. Available: https://asmedigitalcollection.asme.org/mechanismsrobotics/article-abstract/8/3/031010/441832/An-Extensible-Continuum-Robot-With-Integrated
Salerno, M., Zhang, K., Menciassi, A., and Dai, J. S. “A novel 4-DOF origami grasper with an SMA-actuation system for minimally invasive surgery”. IEEE Transactions on Robotics, 32(3), 484-498. 2016. DOI: 10.1109/TRO.2016.2539373. Available: https://ieeexplore.ieee.org/abstract/document/7452410
Dai, Y., Chen, D., Liang, S., Song, L., Qi, Q., and Feng, L. “A magnetically actuated octopus-like robot capable of moving in 3D space”. In 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 2201-2206). IEEE. 2019. DOI: 10.1109/ROBIO49542.2019.8961461. Available: https://ieeexplore.ieee.org/abstract/document/8961461
Kummer, M. P., Abbott, J. J., Kratochvil, B. E., Borer, R., Sengul, A., and Nelson, B. J. “OctoMag: An electromagnetic system for 5-DOF wireless micromanipulation”. IEEE Transactions on Robotics, 26(6), 1006-1017. 2010. DOI: 10.1109/TRO.2010.2073030. Available: https://ieeexplore.ieee.org/abstract/document/5595508
Wu, Z., Troll, J., Jeong, H. H., Wei, Q., Stang, M., Ziemssen, F., and Fischer, P. “A swarm of slippery micropropellers penetrates the vitreous body of the eye”. Science advances, 4(11), eaat4388. 2018. DOI: 10.1126/sciadv.aat4388. Available: https://www.science.org/doi/full/10.1126/sciadv.aat4388
Xu, T., Hwang, G., Andreff, N., & Régnier, S. “Planar path following of 3-D steering scaled-up helical microswimmers”. IEEE Transactions on Robotics, 31(1), 117-127. 2015. DOI: 10.1109/TRO.2014.2380591. Available: https://ieeexplore.ieee.org/abstract/document/7015549
Manamanchaiyaporn, L., Xu, T., & Wu, X. “The Hybrid system with a large workspace towards magnetic micromanipulation within the human head”. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 401-407). IEEE. 2017. DOI: 10.1109/IROS.2017.8202186. Available: https://ieeexplore.ieee.org/abstract/document/8202186
Santamaria, G., Brandi, E., Vitola, and P.L. "Intranasal delivery of mesenchymal stem cell secretome repairs the brain of Alzheimer’s mice." Cell Death & Differentiation 28. 203–218 (2021). DOI: https://doi.org/10.1038/s41418-020-0592-2. Available: https://www.nature.com/articles/s41418-020-0592-2
Yun WS, Choi JS, Ju HM, Kim MH, Choi SJ, Oh ES, Seo YJ, and Key J. "Enhanced homing technique of mesenchymal stem cells using iron oxide nanoparticles by magnetic attraction in olfactory-injured mouse models." International Journal of Molecular Sciences 19.5 (2018): 1376. DOI: https://doi.org/10.3390/ijms19051376. Available: https://www.mdpi.com/1422-0067/19/5/1376
Yung Jin Yoon, Yun Seop Shin, Hyungsu Jang, Jung Geon Son, Jae Won Kim, Chan Beom Park, Dohun Yuk, Jongdeuk Seo, Gi-Hwan Kim, and Jin Young Kim. "Highly stable bulk perovskite for blue LEDs with anion-exchange method." Nano Letters 21. (2021): 3473-3479. DOI: https://doi.org/10.1021/acs.nanolett.1c00124. Available: https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.1c00124
Jeon, S., Park, S. H., Kim, E., Kim, J. Y., Kim, S. W., and Choi, H. “A Magnetically Powered Stem Cell‐Based Microrobot for Minimally Invasive Stem Cell Delivery via the Intranasal Pathway in a Mouse Brain”. Advanced Healthcare Materials, 10(19), 2100801. 2021. DOI: https://doi.org/10.1002/adhm.202100801. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.202100801
Aneurismas Cerebrales: Conozca la Realidad y las Opciones de Tratamiento. Baptist Healt. Available on: https://baptisthealth.net/baptist-health-news/es/aneurismas-cerebrales-conozca-la-realidad-y-las-opciones-de-tratamiento/#:~:text=Anualmente%2C%20suceden%20casi%20500%2C000%20muertes,son%20menores%20de%2050%20a%C3%B1os. Accessed on April 1 of 2022.
Bakenecker, A. C., von Gladiss, A., Schwenke, H., Behrends, A., Friedrich, T., Lüdtke-Buzug, K., and Buzug, T. M. “Navigation of a magnetic micro-robot through a cerebral aneurysm phantom with magnetic particle imaging”. Scientific reports, 11(1), 1-12. 2021. DOI: https://doi.org/10.1038/s41598-021-93323-4. Available: https://www.nature.com/articles/s41598-021-93323-4
Saito S, Tanaka S, Hiroe Y, Miyashita Y, Takahashi S, Satake S, and Tanaka K. “Angioplasty for chronic total occlusion by using tapered-tip guidewires,” Catheterization Cardiovascular Intervent., vol. 59, no. 3, pp. 305–311, 2003. DOI: https://doi.org/10.1002/ccd.10505. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/ccd.10505
Kuon, E., Schmitt, M., and Dahm, J. B. “Significant reduction of radiation exposure to operator and staff during cardiac interventions by analysis of radiation leakage and improved lead shielding,” Amer. J. Cardiol., vol. 89, no. 1, pp. 44–49, 2002. DOI: https://doi.org/10.1016/S0002-9149(01)02161-0. Available: https://www.sciencedirect.com/science/article/abs/pii/S0002914901021610
Jang, G. B., Jeon, S., Nam, J., Lee, W., and Jang, G. “A spiral microrobot performing navigating linear and drilling motions by magnetic gradient and rotating uniform magnetic field for applications in unclogging blocked human blood vessels”. IEEE Transactions on Magnetics, 51(11), 1-4. 2015. DOI: 10.1109/TMAG.2015.2436913. Available: https://ieeexplore.ieee.org/abstract/document/7112155
Kong, D., and Kurosawa, M. K. “A novel swimmer actuator via leaky surface acoustic wave”. In 2018 IEEE International Ultrasonics Symposium (IUS) (pp. 1-4). IEEE. 2018. DOI: 10.1109/ULTSYM.2018.8579910. Available: https://ieeexplore.ieee.org/abstract/document/8579910
Palagi, S., Mark, A. G., Reigh, S. Y., Melde, K., Qiu, T., Zeng, H., and Fischer, P. “Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots”. Nature materials, 15(6), 647-653. 2016. DOI: https://doi.org/10.1038/nmat4569. Available: https://www.nature.com/articles/nmat4569
Iacovacci, V., Ricotti, L., Signore, G., Vistoli, F., Sinibaldi, E., Menciassi, A. “Retrieval of magnetic medical microrobots from the bloodstream”. In 2019 International Conference on Robotics and Automation (ICRA) (pp. 2495-2501). IEEE. 2019. DOI: 10.1109/ICRA.2019.8794322. Available: https://ieeexplore.ieee.org/abstract/document/8794322
Ceylan, H., Yasa, I. C., Yasa, O., Tabak, A. F., Giltinan, J., and Sitti, M. "3D-Printed Biodegradable Microswimmer for Drug Delivery and Targeted Cell Labeling," bioRxiv, p. 379024, 2018. DOI: https://doi.org/10.1101/379024. Available: https://www.biorxiv.org/content/10.1101/379024v1.abstract
Wang, X. H. Qin, C. Hu, A. Terzopoulou, X. Z. Chen, T. Y. Huang, "3D Printed Enzymatically Biodegradable Soft Helical Microswimmers," Advanced Functional Materials, p. 1804107, 2018. DOI: https://doi.org/10.1002/adfm.201804107. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201804107
Derechos de autor 2022 Ingeniería Solidaria

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Compromiso ético y cesión de derechos
El autor debe declarar que su trabajo es original e inédito y que no se ha postulado a evaluación simultánea para su publicación por otro medio. Además, debe asegurar que no tiene impedimentos de ninguna naturaleza para la concesión de los derechos previstos en el contrato.
El autor se compromete a esperar el resultado de evaluación de la revista Ingeniería Solidaria, antes de considerar su presentación a otro medio; en caso de que la respuesta de publicación sea positiva, adicionalmente, se compromete a responder por cualquier acción de reivindicación, plagio u otra clase de reclamación que al respecto pudiera sobrevenir por parte de terceros.
Asimismo, debe declarar que, como autor o coautor, está de acuerdo por completo con los contenidos presentados en el trabajo y ceder todos los derechos patrimoniales, es decir, su reproducción, comunicación pública, distribución, divulgación, transformación, puesta a disposición y demás formas de utilización de la obra por cualquier medio o procedimiento, por el término de su protección legal y en todos los países del mundo, al Fondo Editorial de la Universidad Cooperativa de Colombia, de manera gratuita y sin contraprestación presente o futura.