Una revisión sobre la predicción del rendimiento académico mediante métodos de ensamble
Estudiante de Ingeniería Industrial, Facultad de ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá D.C., Colombia
email: dlmoralesr@correo.udistrital.edu.co
Estudiante de Ingeniería Industrial, Facultad de ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá D.C., Colombia
email: jacaros@correo.udistrital.edu.co
Ingeniero, Estudiante de doctorado en ingeniería, Docente de planta. Facultad de ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá D.C., Colombia.
email: lecontrerasb@udistrital.edu.co
Introducción: El presente artículo es producto de la investigación “Métodos de ensamble para estimar el ren-dimiento académico de estudiantes de educación superior”, desarrollado en la Universidad Distrital Francisco José de Caldas en el año 2021 y se centra en la revisión de trabajos de investigación desarrollados en los últimos cinco años relacionados a la predicción del rendimiento académico utilizando algoritmos de ensamble.
Objetivo: La revisión de la literatura tiene como objetivo identificar los algoritmos más utilizados y las variables más relevantes en la predicción del rendimiento académico.
Metodología: Se realizó una revisión sistemática de la literatura en distintas bases de datos académicas (Science Direct, Scopus, SAGE Journals, EBSCO, ResearchGate, Google Scholar), utilizando ecuaciones de bús-queda construidas con palabras claves.
Resultados: Se encontraron 54 artículos relacionados que cumplen con los criterios de inclusión de la revisión. Además, se encontraron beneficios en la aplicación de métodos de ensamble en la predicción del rendimiento académico.
Conclusión: Se encontró que las variables más influyentes en el rendimiento académico corresponden al factor académico, el algoritmo utilizado que presenta mejores resultados es Random Forest, además de que fue el más utilizado, y que el uso de estos algoritmos es una herramienta precisa para predecir el rendimiento acadé-mico en cualquier etapa de la vida universitaria, y a su vez brindar la información para generar estrategias que permitan mejorar los indicadores de deserción y retención académica.
O. D. Castrillón, W. Sarache, and S. Ruiz-Herrera, “Predicción del rendimiento académico por medio de técnicas de inteligencia artificial,” Formación universitaria, vol. 13, pp. 93–102, 2020. doi: http://doi.org/10.4067/S0718-50062020000100093.
M. Rodríguez Urrego, “La investigación sobre deserción universitaria en Colombia 2006-2016. Tendencias y resultados,” Pedagogía y Saberes, vol. 51, pp. 49–66, 2019. doi: 10.17227/pys.num51-8664.
L. E. Contreras, H. J. Fuentes, and J. I. Rodríguez, “Predicción del rendimiento académico como indicador de éxito/fracaso de los estudiantes de ingeniería, mediante aprendizaje automático,” Formación universitaria, vol. 13, no. 5, pp. 233–246, 2020. doi: http://doi.org/10.4067/S0718-50062020000500233.
E. Porcel, G. N. Dapozo, and M. V. López, “Modelos predictivos y técnicas de minería de datos para la identificación de factores asociados al rendimiento académico de alumnos universitarios,” in XI Workshop de Investigadores en Ciencias de la Computación, 2009, pp. 635–639.
D. L. la Red Martínez, M. J. Karanik, M. E. Giovannini, and N. Pinto, “Perfiles de rendimiento académico: un modelo basado en minería de datos,” Campus virtuales: revista científica iberoamericana de tecnología educativa., vol. IV, pp. 12–30, 2015.
K. Eckert and R. Suénaga, “Aplicación de técnicas de minería de datos al análisis de situación y comportamiento académico de alumnos de la UGD,” in XV Workshop de Investigadores en Ciencias de la Computación, 2013, pp. 92–96.
Marqués, “Predicción del fracaso y el abandono escolar mediante técnicas de minería de datos,” Universidad de Córdoba, 2015, pp. 1 - 92.
Y. Zhang, S. Oussena, T. Clark, and H. Kim, “Use Data Mining to Improve Student Retention in Higher Education - A Case Study.,” in Proceedings of the 12th International Conference on Enterprise Information Systems, Jan. 2010, pp. 190–197. doi: 10.5220/0002894101900197.
E. Castaño, S. Gallón, K. Gómez, and J. Vásquez, “Análisis de los factores asociados a la deserción y graduación estudiantil universitaria,” Lecturas de economía, vol. 65, pp. 11–35, 2006.
G. Psacharopoulos and H. A. Patrinos, “Returns to investment in education: a further update,” Education Economics, vol. 12, no. 2, pp. 111–134, 2004. doi: http://doi.org/10.1080/0964529042000239140.
N. Bedregal-Alpaca, D. Aruquipa-Velazco, and V. Cornejo-Aparicio, “Técnicas de data mining para extraer perfiles comportamiento académico y predecir la deserción universitaria,” Revista Ibérica de Sistemas e Tecnologias de Informaçao, no. E27, pp. 592–604, 2020.
J. I. R. Molano, L. D. F. Zea, and Y. F. P. Reina, “Proposal of Architecture and Application of Machine Learning (Ml) as A Strategy for the Reduction of University Desertion Levels Due to Academic Factors,” Ingeniería Solidaria, vol. 15, no. 3, pp. 1–23, 2019. doi: https://doi.org/10.16925/2357-6014.2019.03.06.
B. Albreiki, N. Zaki, and H. Alashwal, “A systematic literature review of student’performance prediction using machine learning techniques,” Education Sciences, vol. 11, no. 9, p. 552, 2021. doi: https://doi.org/10.3390/educsci11090552.
F. Alshareef, H. Alhakami, T. Alsubait, and A. Baz, “Educational Data Mining Applications and Techniques,” International Journal of Advanced Computer Science and Applications (IJACSA), vol. 11, no. 4, pp. 729–734, 2020.
A. Rico Páez, N. D. Gaytán Ramírez, and D. Sánchez Guzmán, “Construcción e implementación de un modelo para predecir el rendimiento académico de estudiantes universitarios mediante el algoritmo Naïve Bayes,” Diálogos sobre educación. Temas actuales en investigación educativa, vol. 10, no. 19, pp. 1–18, 2019. doi: https://doi.org/10.32870/dse.v0i19.509.
J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Elsevier, 2011, pp. 327 – 439.
R. Asif, A. Merceron, S. A. Ali, and N. G. Haider, “Analyzing undergraduate students’ performance using educational data mining,” Computers & Education, vol. 113, pp. 177–194, 2017. doi: https://doi.org/10.1016/j.compedu.2017.05.007.
R. S. J. D. Baker and K. Yacef, “The State of Educational Data Mining in 2009: A Review and Future Visions,” Journal of Educational Data Mining, vol. 1, no. 1, pp. 3–16, 2009. doi: https://doi.org/10.5281/zenodo.3554657.
A. L. Dyckhoff, D. Zielke, M. Bültmann, M. A. Chatti, and U. Schroeder, “Design and implementation of a learning analytics toolkit for teachers,” Journal of Educational Technology & Society, vol. 15, no. 3, pp. 58–76, 2012.
A. Salcedo, “Desertion in Colombian Universities,” Revista Academia y Virtualidad, vol. 3, no. 1, pp. 50–60, 2010.
J. G. López Martínez and Ó. A. Méndez Aguirre, “Técnicas de Machine Learning para la predicción de desempeño académico en el desarrollo del espacio proyectivo del pensamiento espacial,” Universidad Pedagógica Nacional, 2019, pp. 82 – 127.
J. F. Vega García, “Modelo de pronóstico de rendimiento académico de alumnos en los cursos del programa de estudios básicos de la Universidad Ricardo Palma usando algoritmos de Machine Learning,” Universidad Ricardo Palma, 2019, pp. 1 – 147.
D. I. Candia Oviedo, “Predicción del rendimiento académico de los estudiantes de la UNSAAC a partir de sus datos de ingreso utilizando algoritmos de aprendizaje automático,” Universidad Nacional de San Antonio Abad del Cusco, 2019, pp. 1 – 129.
R. J. Rojas Pari, “Modelo de Aprendizaje Automático Supervisado para Identificar Patrones de Bajo Rendimiento Académico en los Ingresantes al Instituto de Educación Superior Pedagógico Público–Juliaca,” Universidad Peruana Unión, 2021, pp. 19 – 96.
M. Bourel, “Model aggregation methods and applications,” Memoria de Trabajos de Difusión Científica y Técnica, no. 10, pp. 19–32, 2012.
G. Y. Orihuela Maita, “Aplicación de Data Science para la Predicción del Rendimiento Académico de los Estudiantes de la Facultad de Ingeniería de Sistemas de la Universidad Nacional del Centro del Perú,” Universidad Nacional del Centro del Perú, 2019, pp. 1 – 83.
F. F. Patacsil, “Survival analysis approach for early prediction of student dropout using enrollment student data and ensemble models,” Universal Journal of Educational Research, vol. 8, no. 9, pp. 4036–4047, 2020. doi: http://doi.org/10.13189/ujer.2020.080929.
O. W. Adejo and T. Connolly, “Predicting student academic performance using multi-model heterogeneous ensemble approach,” Journal of Applied Research in Higher Education, vol. 10, no. 1, pp. 61–75, 2018. doi: 10.1108/JARHE-09-2017-0113.
A. C. Lagman, L. P. Alfonso, M. L. I. Goh, J. A. P. Lalata, J. P. H. Magcuyao, and H. N. Vicente, “Classification algorithm accuracy improvement for student graduation prediction using ensemble model,” International Journal of Information and Education Technology, vol. 10, no. 10, pp. 723–727, 2020. doi: 10.18178/ijiet.2020.10.10.1449.
J. Malini and Y. Kalpana, “Investigation of factors affecting student performance evaluation using education materials data mining technique,” Materials Today: Proceedings, vol. 47, pp. 6105–6110, 2021. doi: https://doi.org/10.1016/j.matpr.2021.05.026.
D. E. Alessandrini López, “Aprendizaje estadístico en educación: Una propuesta de modelización para carreras de grado en Ingeniería.,” Universidad de la República, 2019, pp. 1 – 95.
L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp. 123–140, 1996. doi: https://doi.org/10.1007/bf00058655.
J. J. Campo Yepes and D. L. Cruz Castro, “Modelos Apilados y factores que pueden afectar la eficiencia,” Universidad Santo Tomás, 2017, pp. 1 – 12.
M. H. D. M. Ribeiro and L. dos Santos Coelho, “Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series,” Applied Soft Computing, vol. 86, pp. 1–30, 2020. doi: https://doi.org/10.1016/j.asoc.2019.105837.
M. Hasibur Rahman and M. Rabiul Islam, “Predict Student’s Academic Performance and Evaluate the Impact of Different Attributes on the Performance Using Data Mining Techniques,” 2nd International Conference on Electrical and Electronic Engineering, ICEEE 2017, no. September 2020, pp. 1–4, 2018. doi: 10.1109/CEEE.2017.8412892.
“Ensemble methods — scikit-learn 1.0.2 documentation.” https://scikit-learn.org/stable/modules/ensemble.html#bagging-meta-estimator
E. J. Phua and N. K. Batcha, “Comparative analysis of ensemble algorithms’prediction accuracies in education data mining,” Journal of Critical Reviews, vol. 7, no. 3, pp. 37–40, 2020. doi: 10.31838/jcr.07.03.06.
L. Yan and Y. Liu, “An ensemble prediction model for potential student recommendation using machine learning,” Symmetry, vol. 12, no. 5, p. 728, 2020. doi: https://doi.org/10.3390/SYM12050728.
A. I. Adekitan and E. Noma-Osaghae, “Data mining approach to predicting the performance of first year student in a university using the admission requirements,” Education and Information Technologies, vol. 24, no. 2, pp. 1527–1543, 2019. doi: 10.1007/s10639-018-9839-7.
A. I. Adekitan and O. Salau, “The impact of engineering students’ performance in the first three years on their graduation result using educational data mining,” Heliyon, vol. 5, no. 2 e01250, pp. 1–16, 2019. doi: 10.1016/j.heliyon.2019.e01250.
M. Ashraf, M. Zaman, and M. Ahmed, “An Intelligent Prediction System for Educational Data Mining Based on Ensemble and Filtering approaches,” Procedia Computer Science, vol. 167, no. 2019, pp. 1471–1483, 2020. doi: 10.1016/j.procs.2020.03.358.
M. Ashraf, M. Zaman, and M. Ahmed, “Using Ensemble StackingC Method and Base Classifiers to Ameliorate Prediction Accuracy of Pedagogical Data,” Procedia Computer Science, vol. 132, no. Iccids, pp. 1021–1040, 2018. doi: 10.1016/j.procs.2018.05.018.
M. Bucos and B. Drăgulescu, “Predicting student success using data generated in traditional educational environments,” TEM Journal, vol. 7, no. 3, pp. 617–625, 2018. doi: 10.18421/TEM73-19.
D. L. Bustamante Peña, “Modelo predictivo de rendimiento académico para el apoyo, prevención y disminución de la tasa de deserción universitaria,” Universidad de Bogotá Jorge Tadeo Lozano, 2021, pp. 1 – 40.
W. Chango, R. Cerezo, and C. Romero, “Multi-source and multimodal data fusion for predicting academic performance in blended learning university courses,” Computers and Electrical Engineering, vol. 89, no. November 2020, pp. 1–11, 2021. doi: 10.1016/j.compeleceng.2020.106908.
J. E. Chaparro Mesa and J. Cuatindioy Imbachi, “Análisis comparativo de técnicas de clasificación para determinar la deserción estudiantil de la facultad de ingeniería de la Universidad de Antioquia, Colombia,” Espacios, vol. 42, no. 7, pp. 63–81, 2021. doi: http://doi.org/10.48082/espacios-a21v42n07p05.
D. Campo-Ávila, G. P. Ramos-Jimenez, R. Morales-Bueno, and M. Baena-García, “Minería de datos educativos para la predicción personalizada del rendimiento académico,” in Conferencia Internacional de Procesamiento de la Informacion, 2018, pp. 1–10.
H. Dissanayake, D. Robinson, and O. Al-Azzam, “Predictive modeling for student retention at St. Cloud state university,” in Proceedings of the International Conference on Data Science (ICDATA), 2016, pp. 215–221.
S. F. Aziz, “Students’ Performance Evaluation Using Machine Learning Algorithms.,” College of Basic Education Researchers Journal, vol. 16, no. 3, pp. 976–986, Jul. 2020.
H. Hassan, S. Anuar, and N. B. Ahmad, “Students’ performance prediction model using meta-classifier approach,” Communications in Computer and Information Science, pp. 221–231, 2019, doi: 10.1007/978-3-030-20257-6_19.
S. Hussain, N. A. Dahan, F. M. Ba-Alwib, and N. Ribata, “Educational data mining and analysis of students’ academic performance using WEKA,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 9, no. 2, pp. 447–459, 2018. doi: 10.11591/ijeecs.v9.i2.pp447-459.
M. Imran, S. Latif, D. Mehmood, and M. S. Shah, “Student academic performance prediction using supervised learning techniques,” International Journal of Emerging Technologies in Learning, vol. 14, no. 14, pp. 92–104, 2019. doi: 10.3991/ijet.v14i14.10310.
M. N. Injadat, A. Moubayed, A. B. Nassif, and A. Shami, “Multi-split optimized bagging ensemble model selection for multi-class educational data mining,” Applied Intelligence, vol. 50, no. 12, pp. 4506–4528, 2020. doi: 10.1007/s10489-020-01776-3.
S. Jayaprakash, S. Krishnan, and J. Jaiganesh, “Predicting Students Academic Performance using an Improved Random Forest Classifier,” in 2nd IEEE International Conference on Emerging Smart Computing and Informatics, ESCI 2020, 2020, pp. 238–243. doi: 10.1109/ESCI48226.2020.9167547.
P. Kamal and S. Ahuja, “An ensemble-based model for prediction of academic performance of students in undergrad professional course,” Journal of Engineering, Design and Technology, vol. 17, no. 4, pp. 769–781, 2019. doi: 10.1108/JEDT-11-2018-0204.
S. Kausar et al., “Mining Smart Learning Analytics Data Using Ensemble Classifiers.,” International Journal of Emerging Technologies in Learning, vol. 15, no. 12, pp. 81–102, Dec. 2020.
G. Kostopoulos, S. Kotsiantis, C. Pierrakeas, G. Koutsonikos, and G. A. Gravvanis, “Forecasting students’ success in an open university,” International Journal of Learning Technology, vol. 13, no. 1, pp. 26–43, 2018. doi: 10.1504/IJLT.2018.091630.
M. Kumar, G. Mehta, N. Nayar, and A. Sharma, “EMT: Ensemble meta-based tree model for predicting student performance in academics,” IOP Conference Series: Materials Science and Engineering, vol. 1022, no. 1, pp. 0–10, 2021. doi: 10.1088/1757-899X/1022/1/012062.
E. J. M. Lauría, E. Presutti, M. Kapogiannis, and A. Kamath, “Stacking classifiers for early detection of students at risk,” CSEDU 2018 - Proceedings of the 10th International Conference on Computer Supported Education, vol. 1, no. Csedu 2018, pp. 390–397, 2018. doi: 10.5220/0006781203900397.
V. L. Miguéis, A. Freitas, P. J. V. Garcia, and A. Silva, “Early segmentation of students according to their academic performance: A predictive modelling approach,” Decision Support Systems, vol. 115, no. September, pp. 36–51, 2018. doi: 10.1016/j.dss.2018.09.001.
L. L. Ochoa, K. Rosas Paredes, and C. Baluarte Araya, “Evaluación de técnicas de minería de datos para la predicción del rendimiento académico,” Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology, vol. 2017-July, no. January, 2017, pp. 1 - 8. doi: 10.18687/LACCEI2017.1.1.368.
M. Pandey and S. Taruna, “An ensemble-based decision support system for the students’ academic performance prediction,” in Advances in Intelligent Systems and Computing, 2018, pp. 163–169. doi: https://doi.org/10.1007/978-981-10-6602-3_16.
S. Sakri and A. S. Alluhaidan, “RHEM: A Robust Hybrid Ensemble Model for Students’ Performance Assessment on Cloud Computing Course,” International Journal of Advanced Computer Science and Applications, vol. 11, no. 11, pp. 388–396, 2020. doi: 10.14569/IJACSA.2020.0111150.
M. Sweeney, H. Rangwala, J. Lester, and A. Johri, “Next-Term Student Performance Prediction: A Recommender Systems Approach,” pp. 1–27, 2016. doi: 10.5281/zenodo.3554603.
R. Trakunphutthirak and V. C. S. Lee, “Application of Educational Data Mining Approach for Student Academic Performance Prediction Using Progressive Temporal Data,” Journal of Educational Computing Research, pp. 1–29, 2021. doi: 10.1177/07356331211048777.
J. Xu, Y. Han, D. Marcu, and M. Van Der Schaar, “Progressive prediction of student performance in college programs,” in 31st AAAI Conference on Artificial Intelligence, 2017, pp. 1604–1610.
E. Yamao, L. C. Saavedra, R. Campos Pérez, and V. de J. Huancas Hurtado, “Prediction of academic performance using data mining in first year students of peruvian university,” Revista USMP - Campus, vol. 23, no. 26, pp. 151–160, 2018. doi: https://doi.org/10.24265/campus.2018.v23n26.05.
H. Zeineddine, U. Braendle, and A. Farah, “Enhancing prediction of student success: Automated machine learning approach,” Computers and Electrical Engineering, vol. 89, pp. 1–9, 2021. doi: 10.1016/j.compeleceng.2020.106903.
S. Zhang, M. Liu, and J. Zhang, “An Academic Achievement Prediction Model Enhanced by Stacking Network,” in International Forum on Digital TV and Wireless Multimedia Communications, 2019, pp. 235–245. doi: https://doi.org/10.1007/978-981-15-3341-9_20.
M. Ragab, A. M. K. Abdel Aal, A. O. Jifri, and N. F. Omran, “Enhancement of Predicting Students Performance Model Using Ensemble Approaches and Educational Data Mining Techniques,” Wireless Communications and Mobile Computing, pp. 1–8, 2021. doi: 10.1155/2021/6241676.
S. S. M. Ajibade, N. B. Binti Ahmad, and S. M. Shamsuddin, “A Novel Hybrid Approach Of Adaboostm2 Algorithm And Differential Evolution For Prediction Of Student Performance,” International Journal of Scientific and Technology Research, vol. 8, no. 7, pp. 65–70, 2019.
S.-S. M. Ajibade, N. B. Ahmad, and S. M. Shamsuddin, “A data mining approach to predict academic performance of students using ensemble techniques,” Joint Conferences on 18th International Conference on Intelligent Systems Design and Applications, ISDA 2018 and 10th World Congress on Nature and Biologically Inspired Computing , NaBIC 2018, vol. 940. Springer Verlag, Faculty of Computing, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia, pp. 749–760, 2020. doi: 10.1007/978-3-030-16657-1_70.
S. Almutairi, H. Shaiba, and M. Bezbradica, “Predicting Students’ Academic Performance and Main Behavioral Features Using Data Mining Techniques,” 1st International Conference on Intelligent Cloud Computing, ICC 2019, vol. 1097 CCIS. Springer, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia, pp. 245–259, 2019. doi: 10.1007/978-3-030-36365-9_21.
S. N. Brohi, T. R. Pillai, S. Kaur, H. Kaur, S. Sukumaran, and D. Asirvatham, “Accuracy Comparison of Machine Learning Algorithms for Predictive Analytics in Higher Education,” Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, vol. 285, no. August, pp. 254–261, 2019. doi: 10.1007/978-3-030-23943-5_19.
M. Jawthari and V. Stoffova, “Effect of encoding categorical data on student’s academic performance using data mining methods.,” eLearning & Software for Education, vol. 1, pp. 521–526, Jan. 2020.
P. Kumari, P. K. Jain, and R. Pamula, “An efficient use of ensemble methods to predict students academic performance,” in 4th IEEE International Conference on Recent Advances in Information Technology, RAIT 2018, 2018, pp. 1–6. doi: 10.1109/RAIT.2018.8389056.
A. Salini, U. Jeyapriya, S. M. College, and S. M. College, “A Majority Vote Based Ensemble Classifier for Predicting Students Academic Performance,” International Journal of Pure and Applied Mathematics, vol. 118, no. 24, pp. 1–11, 2018.
S. S. M. Ajibade, N. Bahiah Binti Ahmad, and S. Mariyam Shamsuddin, “Educational Data Mining: Enhancement of Student Performance model using Ensemble Methods,” IOP Conference Series: Materials Science and Engineering, vol. 551, no. 1, pp. 1–5, 2019. doi: 10.1088/1757-899X/551/1/012061.
A. Amrieh, T. Hamtini, and I. Aljarah, “Mining educational data to predict student’s academic performance using ensemble methods,” International journal of database theory and application, vol. 9, no. 8, pp. 119–136, 2016. doi: https://doi.org/10.1007/978-3-319-21024-7_28.
M. N. Injadat, A. Moubayed, A. B. Nassif, and A. Shami, “Systematic ensemble model selection approach for educational data mining,” Knowledge-Based Systems, pp. 1–15, 2020. doi: 10.1016/j.knosys.2020.105992.
A. Almasri, E. Celebi, and R. S. Alkhawaldeh, “EMT: Ensemble meta-based tree model for predicting student performance,” Scientific Programming, pp. 1–12, 2019. doi: 10.1155/2019/3610248.
B. D. Landa, R. M. Romero, and W. J. M. Rodriguez, “Rendimiento académico de estudiantes en Educación Superior: predicciones de factores influyentes a partir de árboles de decisión,” Telos: Revista de Estudios Interdisciplinarios en Ciencias Sociales, vol. 23, no. 3, pp. 616–639, 2021. doi: https://doi.org/10.36390/telos233.08.
Derechos de autor 2022 Ingeniería Solidaria

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Compromiso ético y cesión de derechos
El autor debe declarar que su trabajo es original e inédito y que no se ha postulado a evaluación simultánea para su publicación por otro medio. Además, debe asegurar que no tiene impedimentos de ninguna naturaleza para la concesión de los derechos previstos en el contrato.
El autor se compromete a esperar el resultado de evaluación de la revista Ingeniería Solidaria, antes de considerar su presentación a otro medio; en caso de que la respuesta de publicación sea positiva, adicionalmente, se compromete a responder por cualquier acción de reivindicación, plagio u otra clase de reclamación que al respecto pudiera sobrevenir por parte de terceros.
Asimismo, debe declarar que, como autor o coautor, está de acuerdo por completo con los contenidos presentados en el trabajo y ceder todos los derechos patrimoniales, es decir, su reproducción, comunicación pública, distribución, divulgación, transformación, puesta a disposición y demás formas de utilización de la obra por cualquier medio o procedimiento, por el término de su protección legal y en todos los países del mundo, al Fondo Editorial de la Universidad Cooperativa de Colombia, de manera gratuita y sin contraprestación presente o futura.