Tendencias en ingeniería de materiales para la fabricación de células solares fotovoltáicas

Universidad Santo Tomás
Ingeniero ambiental
email: oscarcucaita@usantotomas.edu.co

Universidad Santo Tomás
Ingeniero químico. Profesor
email: Ivancabeza@usantotomas.edu.co
Introducción: el artículo de revisión fue desarrollado durante el segundo semestre del 2016 y el primero del 2017 en la Facultad de Ingeniería Ambiental de la Universidad Santo Tomás. La energía solar fotovoltaica ha adquirido un importante papel en el contexto global por el uso de fuentes renovables y disminución de impactos ambientales, además de ser un participe influyente en la satisfacción de la demanda energética actual. No obstante, esta cuenta con limitaciones como la dependencia de la disponibilidad de radiación y el uso de silicio como materia prima de las células solares.
Metodología: se realizó un estado del arte de diferentes bases de datos consultadas, en su mayoría Science Direct y Scopus, sobre los diferentes materiales alternativos y tendencias actuales, y su perspectiva de funcionamiento e implementación.
Resultados: se exponen las células solares que están empleando diversos materiales, dentro de las cuales destacan las de Teluro de Cadmio (CdTe) que presentan características de bajo costo y considerables eficiencias.
Conclusión: las células de cobre, indio, galio, selenio/azufre (cigs) presentan como característica principal el alto coeficiente de adsorción; no obstante, el gran reto por superar es llevar a cabo su implementación en un ámbito industrial. Las células solares orgánicas presentan una alta eficiencia y un bajo costo para su posible uso en el contexto colombiano.
C. E. Marín, “La energía solar fotovoltaica”, Nimbus, n.° 13-14, pp. 5-31, 2004. [Online]. Disponible en ht-tps://dialnet.unirioja.es/descarga/articulo/1173549.pdf
A. L. N. M. I. Millán y P. A. R. Aumente, “Investiga-ción e impacto ambiental de los edificios. La Ener-g í a ”, Inf. La Construcción, vol. 57, n.° 1, pp. 47-61, 2005. [Online]. Disponible en http://informesde-laconstruccion.revistas.csic.es/index.php/informes-delaconstruccion/article/view/477
F. Bellenilla, “La sostenibilidad desde la perspecti-va del agotamiento de los combustibles fósiles, un problema socio-ambiental relevante”, Investigación en la Escuela, vol. 55, pp. 73-87, 2005. [Online]. doi: https://doi.org/10.3989/ic.2005.v57.i498.477
L. Bird et al., “Wind and solar energy curtailment: A review of international experience”,Renew. Sustain. Energy Rev, vol. 65, pp. 577-586, 2016. [Online]. doi: https://doi.org/10.1016/j.rser.2016.06.082
L. M. Peter, “Towards sustainable photovol.taics: the search for newmateriales”, Philos. Trans. A. Math. Phys. Eng. Sci., vol. 369, n.° 1942, pp. 140-1856, 2011. [Online]. doi: https://doi.org/10.1098/rsta.2010.0348
I. B. Salbidegoitia García, “Energía Solar”, DYNA, vol. 83, n.° 9, pp. 561-566, Dic. 2008. [Online]. Disponible en https://es.scribd.com/document/325763315/2411DY-NAINDEX-pdf
E. Lorenzo, “Retratos de la conexión fotovoltaica a la red (iv) seguidores y huertas solares”, Era Sol., vol. 119, n.° iv, pp. 6-23, 2004. [Online]. Disponible en www.fotovoltaica.com/retrato6.pdf
Madridsolar, Guía de la energía solar. Madrid: Madridsolar, 2006. [Online]. Disponible en https://www.fenercom.com/pdf/publicaciones/guia-de-la-energia-solar-fenercom.pdf
C. E. L. Latunussa, F. Ardente, G. A. Blengini y L. Mancini, “Life Cycle Assesment of an innovative recycling process for crystalline silicon photovoltaic panels”, Sol. Energy Mater. Sol. Cells, vol. 146, pp. 101-111, 2016. [Online]. doi: https://doi.org/10.1016/j.solmat.2016.03.020
O. Enguita, “Análisis del ciclo de vida para el desar-rollo de las Reglas de la Categoría de Producto de sistemas solares fotovol.taicos para la edificación”, Universitat politécnica de Catalunya, 2012. [Online]. Disponible en https://upcommons.upc.edu/bitstream/handle/2099.1/19179/TFM-OscarEnguita.pdf
J. Del Río et al., “Análisis del ciclo de vida de un panel solar fotovoltaico empleado para la alimenta-ción eléctrica de instalaciones de riego, comparan-do las metodologías eco-indicador 99 y eps-2000”, presentado en xiii Congreso Nacional de Ciencias Hortícolas, Almería, 2012, pp. 708–712.
W. A. Chamorro Coral y S. Urrego Riveros, “Celdas solares orgánicas, una perspectiva hacia el futuro”, Elementos, vol. 2, n.o 2, May. 2013. [Online]. doi: http://dx.doi.org/10.15765/e.v2i2.181
B. W. Han, S. C. Park, J. H. Ahn y B. T. Ahn, “Pho-tovoltaic properties of close-space sublimated CdTe solar cells”, Sol. Energy, vol. 64, n.° 1-3, pp. 49-54, 1998. [Online]. doi: https://doi.org/10.1016/S0038-092X(98)00023-1
T. L Chu, S. S. Chu, C. Ferekides, C.Q. Wu, J. Britt y C. Wang, “13,4% efficient thin-film CdS/CdTe solar cells”, J. Appl. Phys., vol. 70, n.° 12, 1991. doi: https://doi.org/10.1063/1.349717
M. A. Green, K. Emery, Y. Hishikawa, W. Warte y E. D. Dunlop, “Solar cell efficiency tables (version 41)”,Prog. Photovoltaics Res. Appl., vol. 21, n.° 1, 2013. [Online]. doi: https://doi.org/10.1002/pip.2352
M. A. Green, K. Emery, Y. Hishikawa, W. Warte y E. D. Dunlop, “Solar cell efficiency tables (version 40)”, Prog. Photovoltaics Res. Appl., vol. 20, n.° 5, 2012. [Online]. doi: https://doi.org/10.1002/pip.2267
President’s Advisory Council on Financial Literacy, “Annual Report”, 2008. [Online]. Disponible en https://www.treasury.gov/about/organizational-structure/offices/Domestic-Finance/Documents/exec_sum.pdf.
E. Regalado-Pérez, M. G Reues-Banda y X. Mathew, “Influence of oxygen concentration in the CdCl12 treatment process on the photovol.taic properties of CdTe/CdS solar cells”, Thin Solid Films, vol. 582, pp. 134-138, 2015. [Online]. doi: https://doi.or-g/10.1016/j.tsf.2014.11.005
A. K. Turner et al. “Stable, high efficiency thin film solar cells produced by electrodeposition of cad-mium telluride”, Sol. Energy Mater., vol. 23, n.° 2-4, pp. 388-393, 1991. [Online]. doi: https://doi.org/10.1016/0165-1633(91)90145-B
S. J. C. Irvine et al., “The role of transparent conduct-ing oxides in metal organic chemical vapour depo-sition of CdTe/CdS Photovol.taic solar cells”. Thin Solid Films Filmes, vol. 515, n.° 15, pp. 6.099-6.102, 2007. [Online]. doi: http://dx.doi.org/10.1016/j.tsf.2011.04.194
S. Arroyo, B. Ortiz, L. Enrique y C. Vicentina. “Cad-mio: efectos sobre la salud. Respuesta celular y molecu-l a r ”, Acta Toxicológica Argentina, vol. 21, pp. 33-49, 2013. [Online]. Disponible en https://documentslide.org/cadmio-efectos-sobre-la-salud-respuesta-celu-lar-y-molecular
J. Sites y J.Pan, “Strategies to increase CdTe solar-cell vol.tage”, Thin Solid Films, vol. 515, n.° 15, pp. 6.099-6.102, 2007. [Online]. doi: https://doi.org/10.1016/j.tsf.2006.12.147
R. Martin, “Células solares de teluro de cadmio logran un nuevo récord de eficiencia”, mit Technol. Rev.,2016. [Online]. Disponible en https://www.technolo-gyreview.es/s/5648/celulas-solares-de-teluro-de-cad-mio-logran-un-nuevo-record-de-eficiencia
J. M. Delgado-Sánchez et al., “Front contact opti-mization of industrial scale cis solar cells for low solar concentration using 2D physical modeling”, Renew. Energy, vol. 101, pp. 90-95, 2017. [Online]. doi: https://doi.org/10.1016/j.renene.2016.08.046
M. Saifulah et al., “Effect of Cu content on the pho-tovol.taic proprieties of wide bandgap cigs solar cells for low solar concentration using 2D physi-cal modeling” Renew. Energy, vol. 101, pp. 90-95, 2017. [Online]. doi: https://doi.org/10.1016/j.rene-ne.2016.08.046
Y. M. Shin, C. S. Lee, D. H. Shin, H. S. Know, B. G. Park y B. T. Ahn, “Surface modification of cigs film by annealing and its effect on the band structure and photovol.taic properties of cigs solar cells”,Cur r. Appl. Phys., vol. 15, n.° 1, pp. 18-24, 2015. [Online]. doi: https://doi.org/10.1016/j.cap.2014.09.023
Y. M. Shin, D. H. Shin, J. H. Kim y B. T. Ahn, “Effect of Na doping using Na2S on the structure and photovol.taic properties of cigs solar cells”, Curr. Appl. Phys., vol. 11, n.° 1, Supplement, pp. S59-S64, 2011. [On-line]. doi: https://doi.org/10.1016/j.cap.2010.11.019
J. Gutiérrez Berasategui y E, Barriga, “Tecnología cigs para nuevas células solares”, Energías renovables, p. 4, 2012. [Online]. Disponible en https://www.energias-renovables.com/fotovoltaica/tecno-logia-cigs-para-nuevas-celulas-solares
B. Farhadi and M. Naseri, “Structural and physi-cal characteristics optimization of a dual junction cgs/sigs solar cell: A numerical simulation”, Optik (Stuttg), vol. 127, n.° 21, pp. 1032-10237, 2016. [On-line]. doi: https://doi.org/10.1016/j.ijleo.2016.08.029
J.T. Horstmann y K. F. Goser, “Monolithic integra-tion of a silicon micromotor in combination with the cmos drive circuit on one chip”, Microelectron. Eng., vol. 67-68, pp. 390-306, 2003. [Online]. doi: https://doi.org/10.1016/S0167-9317(03)00094-7
N. Espinosa y F.C Krebs, “Life cycle analysis of or-ganic tandem solar cells: When are they warranted?” Sol. Energy Mater. Sol. Cells, vol. 120, n.°part b, pp. 692-700, 2014. [Online]. doi: https://doi.org/10.1016/j.solmat.2013.09.013
F. Martinez et al., “Classical or inverted photovol-taic cells: On the importance of the morphology of the organic layers on their power conversion efficiency”, Dyes and Pigments, vol. 132, pp. 185-193, 2016. [Online]. doi: https://doi.org/10.1016/j.dyepig.2016.04.050
F. Meyer, “Fluorinated conjugated polymers in organic bulk heterojunction solar cells”, Prog. Polym. Sci., vol. 47, pp. 70-91, 2015. doi: https://doi.org/10.1016/j.prog-polymsci.2015.04.007
Y. Hunag, E. J. Kramer, A. J. Heeger y G.C. Bazan, “Bulk heterojunction solar cells: Morphology and performance relationships”, Chem. Rev., vol. 114, n.°14, pp. 7.006-7.043, 2014. [Online]. doi: https://doi.org/10.1021/cr400353v
Y. Guo et al., “Polymer solar cells with high open-cir-cuit vol.tage based on novel barbell-shaped bifuller-ene derivative as acceptor”, Chinese J. Chem., vol. 36, n.° 1, pp. 172-178, 2016. [Online]. doi: https://doi.org/10.6023/cjoc201506012
D. Gendron y M. Lecler, “New conjugated polymers for plastic solar cells”, Energy Environ. Sci., vol. 4,n.° 4, pp. 1225-1237, 2011. [Online]. doi: https://doi.org/10.1039/c1ee01072g
T .E. Anderson y M. E Kose, “Impact of solution casting temperature con power conversion efficien-cies of bulk heterojunction organic solar cells”, J. Photochem. Photobiol. A Chem., vol. 318, pp. 51-55, 2016. [Online]. doi: https://doi.org/10.1016/j.jpho-tochem.2015.11.026
G. Chidichimo y L. Filipelli, “Organic solar cells: Problems and perspectives”, Int. J. Photoener-gy, vol. 2010, 2010. [Online]. doi: http://dx.doi.org/10.1155/2010/123534
T. E. Anderson and M. E. Kose, “Impact of solution casting temperature on power conversion efficien-cies of bulk heterojunction organic solar cells”, J. Photochem. Photobiol. A Chem., vol. 318, pp. 51-55, 2016. [Online]. doi: https://doi.org/10.1016/j.jpho-tochem.2015.11.026
T. Fukua, H. Suzuki, N. Yoshimoto y Y. Liao, “Controlled donor-acceptor ratio for application of organic photovoltaic cells by alternative inter-mittent electrospray co-deposition”, Org. Electron., vol. 33, pp. 32-39, 2016. [Online]. doi: https://doi.org/10.1016/j.orgel.2016.03.011
I. Etxebarria, J. Ajuria y R. Pacios, “Solution-Pro-cessable polymeric solar cells: A review on mate-rials, strategies and cell architectures to overcome 10%”, Org. Electron. Physics, Mater. Appl., vol. 19, pp. 34-60, 2015. [Online]. doi: https://doi.org/10.1016/j.orgel.2015.01.014
A. Pivrikas, H. Neugebauer y N. S. Sariciftci, “Influ-ence of processiong additives to nano-morphology and efficiency of bulk-heterojunction solar cells: A comparative review”, Sol. Energy, vol. 85, n.° 6, pp. 1.226-1.237, 2011. [Online]. doi: https://doi.or-g/10.1016/j.solener.2010.10.012
P. Peumans, A Yakimov y S. R Forrest, “Small molecu-lar weight organic thin-film photodetectors and solar cells”, J. Appl. Phys., vol. 93, n.° 7, pp. 3693-3723, 2003. [Online]. doi: https://doi.org/10.1063/1.1534621
S. S. Sun, “Optimum energy levels and offsets for or-ganic donor/acceptor binary photovol.taic materials and solar cells”, Mater. Sci. Eng. B Solid-State Mater. Ad v. Te c h n o l., vol. 116, n.° 3, pp. 251-256, 2005. [On-line]. doi: https://doi.org/10.1016/j.mseb.2004.05.052
S. Sun et al., “Conjugated block copolymers for op-to-electronic functions”, Synth. Met., vol. 137, n.° 1-3, pp. 883-884, 2003. doi: https://doi.org/10.1016/S0379-6779(02)01124-4
B. Pradhan y A. J. Pa, “Organic heterojunction pho-tovoltaic cells: Role of functional groups in electron acceptor materials”, Sol. Energy Mater. Sol. Cells, vol.81, n.° 4, pp, 469-476, 2004. [Online]. doi: https://doi.org/10.1016/j.solmat.2003.11.024
T. Stübinger y W. Brütting, “Exciton diffusion and op-tical interference in organic donor-acceptor photo-voltaic cells”, J. Appl. Pys., vol. 90, n.° 7, pp. 3632-3641, 2001. doi: https://doi.org/10.1063/1.1394920
Q. An et al., “Improved efficiency of bulk Hetero-junction Polymer Solar Cells by Doping low band-gap small molecule”, acs Appl. Mater. Interfaces, vol. 186, Agos. 2016, pp. 161-164, 2014. [Online]. doi: https://doi.org/10.1016/j.matlet.2016.09.118
H. Zhao et al., “Efficient organic solar cells pro-cessed from hydrocarbon solvents”,Nat. Energy, vol. 1, pp. 15-27, 2016. doi: https://doi.org/10.1038/nenergy.2015.27
A. Kovalenko et al., “Towards imporved efficiency of bulk-heterojunction solar cells using various spinel ferrite magnetic nanoparticles”, Org. Electron., vol. 39, pp. 118-126, 2016. doi: https://doi.org/10.1016/j.orgel.2016.09.033
P. Fan, Y. Zhng, D. Zheng y J. Yu, “Improved effi-ciency of bulk heterojunction polymer solar cells by doping with iridium complex”, Mater. Left, vol. 186, pp. 161-164, 2017. doi: https://doi.org/10.1016/j.matlet.2016.09.118
L. Lu, T. Xu, W. Chen, E.S Landry y L. Yu, “Ternary blend polymer solar cells with enhanced power con-version efficiency”, Nat.Photonics, vol. 8, n.°, 9, pp. 716-722, 2014. doi: https://doi.org/10.1038/npho-ton.2014.172
A. Mhamdi, W. Boukhili, M. Raissi, M. Mahdouani, L. Vignau y R. Bourguiga, “Simulation and optimiza-tion of the performance of organic photovoltaic cells based on capped copolymers for bulk heterojunc-tions”, Supertattices Microstruct., vol. 96, pp. 241-252, 2016. [Online]. doi: https://doi.org/10.1016/j.spmi.2016.05.029
C. J. Brabec, “Organic photovol.taics: Tecnology and market”, Sol. Energy Mater. Sol Cells, vol. 83, n.° 2-3, pp. 273-292, 2004. [Online]. doi: https://doi.or-g/10.1016/j.solmat.2004.02.030
R. C. Pasquali, D. A. Chiappetta y C. Bregni, “Los copolímeros en bloques anfitílicos y sus aplicaciones farmacéuticas”, vol. 24, n.° 4, 2005. [Online]. Disponible en www.latamjpharm.org/trabajos/24/4/LAJOP_24_4_7_2_GZNEXU4ZPK.pdf
N. Sary et al., “A new supramolecular route for using rod-coil block copolymers in photovol.taic applications”, Adv. Mater., vol. 22, n.° 6, pp. 763768, 2010. [Online]. doi: https://doi.org/10.1002/adma.200902645
C. Yang, J. K. Lee, A. J Heeger y F. Wild, “Well-de-fined donor acceptor rod-coil diblock copolymers based on P3HT containing C60: The morphology and role as a surfactant in bulk-heterojunction so-lar cells”, J. Mater. Chem., vol. 19, n.° 30, pp. 5416-5423, 2009. [Online]. doi: https://doi.org/10.1039/b901732a
F. Lui, Y. Gu, X. Shen, S. Ferdous, W. Wang y T. P. Russel, “Characterization of the morphology of solution-processed bulk heterojunction organ-ic photovoltaics”, Prog. Polym. Sci., vol. 38, n.° 12, pp. 1990-2052, 2013. [Online]. doi: https://doi.or-g/10.1016/j.progpolymsci.2013.07.010
F. Lui, Y. Gu, J. W. Jung, W. H. Jo y T. P. Russell, “On the morphology of polymer-based photovol-taic”, J. Polym. Sci. Part B Polym. Phys., vol. 50, n.° 15, pp. 1018-1044, 2012. [Online]. doi: https://doi.org/10.1002/polb.23063
L. M. Chen, Z. Hong, G. Li y Y. Yango, “Recent prog-ress in polymer solar cells: Manipulation of polymer: Fullerene morphology and the formation of efficient inverted polymer solar cells”, Adv. Mater., vol. 21, n.° 14-15, pp. 1434-1449, 2009. [Online]. doi: https://doi.org/10.1002/adma.200802854
K. M. Coakley and M. D Mc Gehee, “Conjugatedpolymer photovol.taic cells”, Chem. Mater., vol. 16, n.° 23, pp. 4533-4542, 2004. [Online]. doi: https://doi.org/10.1021/cm049654n
M. A Ruderer, E. Metwalli, W. Wang, G. Kaune, S.V Roth y P, Müller-Buschbaum, “Thin films of photo-active polymer blends”, Chem. Phys. Chem., vol. 10, n.° 4, pp. 664-671, 2009. [Online]. doi: https://doi.org/10.1002/cphc.200800773
H. Hoppe and N. S. Sariciftci, “Morphology of poly-mer/fullerene bulk heterojunction solar cells”, J. Ma-ter. Che. M., vol. 16, n.°1, pp. 45-61, 2006. [Online]. doi: https://doi.org/10.1039/B510618B
D. M Stoltzfus et al., “Improved efficiency of poly-mer-fullerene bulk heterojunction solar cells by the addition of Cu(II)-porphyrin-oligothiophene conju-gates”, Synth. Met., vol. 218, pp. 1–8, 2016. [Online]. doi: https://doi.org/10.1016/j.synthmet.2016.04.026
A. L. Fagua y W. F. Bernal, “Celdas solares orgánicas, Revista Ciencia, Innovación y Tecnología, vol. 2, pp. 71-81, 2015. [Online]. Disponible en www.revis-tasjdc.com/main/index.php/rciyt/article/view/412
Derechos de autor 2017 Ingeniería solidaria

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Compromiso ético y cesión de derechos
El autor debe declarar que su trabajo es original e inédito y que no se ha postulado a evaluación simultánea para su publicación por otro medio. Además, debe asegurar que no tiene impedimentos de ninguna naturaleza para la concesión de los derechos previstos en el contrato.
El autor se compromete a esperar el resultado de evaluación de la revista Ingeniería Solidaria, antes de considerar su presentación a otro medio; en caso de que la respuesta de publicación sea positiva, adicionalmente, se compromete a responder por cualquier acción de reivindicación, plagio u otra clase de reclamación que al respecto pudiera sobrevenir por parte de terceros.
Asimismo, debe declarar que, como autor o coautor, está de acuerdo por completo con los contenidos presentados en el trabajo y ceder todos los derechos patrimoniales, es decir, su reproducción, comunicación pública, distribución, divulgación, transformación, puesta a disposición y demás formas de utilización de la obra por cualquier medio o procedimiento, por el término de su protección legal y en todos los países del mundo, al Fondo Editorial de la Universidad Cooperativa de Colombia, de manera gratuita y sin contraprestación presente o futura.