Gestión de integridad en facilidades "On Shore" con tecnología "high definition survey" (HDS) 3D

Universidad Pedagógica y Tecnológica y de Colombia
email: andres.molina@intecorpconsulting.com
Introducción: este artículo es producto de la investigación “Gestión de integridad en facilidades on shore con tecnología high definition survey (hds) 3D” de la Universidad Pedagógica y Tecnológica y de Colombia, realizada durante el 2016 y el 2017.
Metodología: se partió de una revisión documental de ScienceDirect, Proquest, ebsco, dialnet, se establecieron los factores generales de un sgi; se presenta la validación de hds3d, la integración al sistema de gestión de integridad y beneficios.
Resultados: se presenta una metodología de integración de la tecnología que se basa en un modelamiento láser del estado real en fases “as-built” o “as-it” de los activos para poder tener una visión más real del estado, presentando el estudio de caso de la metodología usada por Inspectra srl (Bolivia).
Conclusión: a pesar del poco uso de esta tecnología en facilidades se puede evidenciar la capacidad de generar resultados de integridad como apoyo en ingeniería a la inversa, inspecciones en servicio, aptitud para el servicio y como herramienta de control del manejo del cambio (moc), entre otros, y así poder sobre esto tomar decisiones de cómo gestionarlos usando datos de ubicación y dimensiones reales.
Erwin Frei, Jonathan Kung y Richard Bukowski, “High-definition surveying (hds): a new era in reality capture”, Leica Geosystems hds, 2005. [Online]. Disponible en http://www.isprs.org/proceedings/XXXVI/8-W2/FREI.pdf
Martial Hebert y Eric Krotkov, “3D measurements from imaging laser radars: how good are they?”, In-ternational Journal of Image and Vision Computing, vol. 10, n.º 3, pp. 170-178, 1991. [Online]. Disponible en http://www.ri.cmu.edu/pub_files/pub2/he-bert_martial_1991_1/hebert_martial_1991_1.pdf
E. Catmull, A subdivision algorithm for computer dis-play of curved surfaces, University of Utah, 1974, pp. 2-4 [Online]. Disponible en http://static1.1.sqsp-cdn.com/static/f/552576/6419248/1270507173137/catmull_thesis.pdf ?token=HytCG9faeSevSXpD-01dUP2bsvoU%3D
J. F. Blinn, Texture and Reflection in Computer Gen-erated Images, Communications of the acm, vol. 19, n.º 10, pp 542-547, 1976. [Online]. Disponible en http://papers.cumincad.org/data/works/att/186e.content.pdf
J. F. Blinn, “Models of Light Reflection for Computer Synthesized Pictures”, acm siggraph Computer Graphics, vol. 11, n.º 2, pp 192-198, 1977. [Online]. Disponible en http://dl.acm.org/citation.cfm?id=563893
J. F. Blinn, Simulation of Wrinkled Surfaces, acm siggraph Computer Graphics, vol. 12, n.º 3, pp 286-292, 1978. [Online]. Disponible en http://www.cs.jhu.edu/~misha/Fall16/Readings/Blinn78.pdf
C. Csuri, R. Hackathorn, R. Parent, W. Carlson y M. Howard, ‘‘Towards an Interactive High Visual Complexity Animation System’’, Computer Graphics, vol. 13, n.º 2, pp. 289-298, ag., 1979. [Online]. Disponible en https://pdfs.semanticscholar.org/ddf1/291c8b2b-10b2fe92911bed743e1319ae11cc.pdf
W. T. Reeves, ‘‘Particle Systems - A Technique for Modeling a Class of Fuzzy Objects’’, Computer Graphics, vol. 17, n.º 3, pp. 359-376, jul. 1983. [On-line]. Disponible en https://www.lri.fr/~mbl/ENS/IG2/devoir2/files/docs/fuzzyParticles.pdf
E. Catmull y A. Smith, ‘‘3D Transformation of Im-ages in Scanline Order,’’ Computer Graphics, vol. 14, n.º 3, July, 1980, pp. 279-285. [Online]. Disponible en http://alvyray.com/Papers/CG/2pass80.pdf
M. Levoy y T. Whitted, “The Use of Points as a Display Primitive Computer Science Department”, Uni-versity of North Carolina, 1982.
S. Rubin. y T. Whitted, ‘‘A 3-Dimensional Represen-tation for Fast Rendering of Complex Scenes’’, Computer Graphics, vol. 14, n.º 3, jl. 1980, pp. 110-116. [Online]. Disponible en https://graphics.stanford.edu/papers/points/point-with-scanned-figs.pdf
B. Brecukman, “25 years of high definition 3D scan-ning: History, State of the art”, Outlook, pp. 3-7, 2014. [Online]. Disponible en http://www.bcs.org/upload/pdf/ewic_ev14_s19paper3.pdf
T. A. Funkhouser, C. H. Séquin y S. J. Teller, “Ma-nagement of Large Amounts of Data in Interactive Building”, pp. 1-10, 1992. [Online]. Disponible en http://www.cs.princeton.edu/courses/archive/spr01/cs598b/papers/funkhouser92.pdf
J. Hancocka et al., pp. 4-10, 1998. [Online]. Disponible en http://www.cs.cmu.edu/~jhancock/Docs/icra98laser.pdf
C. Fröhlich, M. Mettenleiter, F. Härtl, G. Dalton y D. Hines, “Imaging Laser Radar for 3-D Modelling of Real World Environments”, Internat. Conference on opto / irs2 / mtt, pp. 1-8, My. 2000. [Online]. Disponible en http://www.emeraldinsight.com/doi/full/10.1108/02602280010351019
W. Boehler, M. B. Vicent y A. Marbs, “Investigating Laser Scanner Accuracy”, i3mainz, Institute for Spatial Information and Surveying Technology, fhMainz, University of Applied Sciences, pp. 1-2, 2003. [Online]. Disponible en https://hds.leica- geosys-tems.com/hds/en/Investigating_Acurracy_Mintz_White_Paper.pdf
J. Rothermel y J. McGill, “Digitized platforms en-able zero-defect construction of offshore facilities” [serial online]. pp. 1-8, May 2006; 66(5):100-102. Disponible en Business Source Premier. [On-line]. Disponible en http://www.offshore-mag.com/articles/print/volume-66/issue-5/construc-tion-installation/digitized-platforms-enable-ze-ro-defect-construction-of-offshore-facilities.html
pr n. Russian State Nuclear Corporation niaep-ase Uses Intergraph® SmartPlant® Fusion to Capture and Manage 3D Model Data. pr Newswire us [serial on-line], pp. 1-9, November 11, 2013: Available from: Regional Business News, Ipswich, ma. Accessed June 13, 2017.
G. Durán-Dominguez , A. Felicisimo y M. E. Polo, “3D study of cultural heritage for conservation: reliability of the portable 3D laser scanners”, Inter-national Congress on Science and Technology for the Conservation of Cultural Heritage, Seville, crc Press, Balkema, Leiden, pp. 357-362, 2014. [Online]. Dis-ponible en http://www.sciencedirect.com/science/article/pii/S1296207401011086
“El faro laser Scanner ls, registra espacios 3D”, De-formación metálica: Técnicas de fabricación, acaba-do y transformación del fleje, chapa, tubos y alambre, Año nº 31, n.º 283, 2005, págs. 80-82. [Online]. Disponible en https://dialnet.unirioja.es/servlet/revis-ta?codigo=405
E. Mesa Múnera, J. F. Ramírez Salazar y J. Branch Bedoya, “Construcción de un modelo digital 3D de piezas precolombinas utilizando escaneo láser”, Avances en Sistemas e Informática, vol. 7, n.º 1, 2010, p. 14. [Online]. Disponible en http://www.bdigital.unal.edu.co/23619/1/20611-69647-1-PB.pdf
D. Hidalgo García, J. A. Díaz y R. S. Vargas, “Láser escáner 3D aplicado a edificación”, X Congreso Internacional de Expresión Gráfica aplicada a la Edificación: Nuevas líneas de investigación en Ingeniería de Edificación, 2010, pp. 227-234. [On-line]. Disponible en https://dialnet.unirioja.es/ser-vlet/articulo?codigo=4979908
M. Johnson y E. Liscio, “Suspect Height Estimation Using the Faro Focus 3D Laser Scanner”, Journal of Forensic Sciences, vol. 60, n.º. 6, 2015, pp. 1582-1588. [Online]. Disponible en http://www.iabpa.org/uploads/files/iabpa%20publications/December%202015%20JBPA-2.pdf
J. Pikas, “Understanding 3D Structured Light To Assess Corrosion Defects”, Inspectioneering Journal, pp. 3-8, sep. 2013. [Online]. Disponible en http://www.nace-corpuschristi.org/images/Understan-ding_3D_Structured_Light_To_Assess_Corro-sion_Defects.pdf
P. H. Allard, J. S. Fraser, “Application of 3D Laser Method for Corrosion Assessment on a Spherical Pressure Vessel Creaform”, Pipeline Tecnhology Conference, pp. 5-10, 2015. [Online]. Disponible en http://www.ndt.net/article/apcndt2013/papers/116.pdf
C. Embry, B. Nickerson y M. Hardy, “High Resolu-tion 3D Laser Imaging for Inspection, Maintenance, Repair, and Operations, Research Partnership to Se-cure Energy for America (rpsea)”, pp. 1-25, 2014. [Online]. Disponible en https://www.netl.doe.gov/File%20Library/Research/Oil-Gas/deepwater%20technology/09121-3300-06-final-report.pdf
“Mapeado láser para modelización en 3D”, Infomarine: Actualidad y tecnología de la industria naval y marítima, n.º. 97, 2004, p. 58. [Online]. Disponible en https://dialnet.unirioja.es/servlet/articulo?codi-go=3069576
A.K. Aijazi, L. Malaterre, M. L. Tazir L. Trassoudaine y P. Checchin, “Detecting and analyzing corrosion spots on the hull of large marine vessels using col-ored 3d lidar point clouds”,sprs Annals of the Photogrammetry, Remote Sensing and Spatial Infor-mation Sciences, 12–19 jul. 2016, pp. 1-10. [Online]. Disponible en http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-3/153/2016/is-prs-annals-III-3-153-2016.pdf
G. Camp, P. Carreaud y H. Lançon, “Large structures: which solutions for health monitoring?”, xxiv Inter-national cipa Symposium, p. 5, Sep. 2013. [Online]. Disponible en http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-5-W2/137/2013/isprsarchives-XL-5-W2-137-2013.pdf
A. Molina, “Evaluación de la aplicabilidad del mo-delo de gestión de integridad propuesto por la practica recomendada api1160 en estaciones de bombeo y facilidades de tubería de proceso ‘piping’ y/o no marraneables, respecto a los parámetros de inspección de api570”,xiii Congreso Nacional de Corrosion y iv Congreso Internacional de Materiales e Integridad Estructural, ascor, pp 3-45, 2016
api Recommended Practice 1160, Managing System Integrity for Hazardous Liquid Pipelines, American Petroleum Institute (api), pp. 4-100, Washington, 2013.
api Inspection Code, api 570 4th Ed, Piping Inspec-tion Code- In-service Inspection, American Petro-leum Institute (api), pp-1-80, Washington, 2016.
api Recommended Practice 581, api570 4th Ed., Risk-based Inspection Methodology, American Pe-troleum Institute (api), pp-1-200, Washington, 2016
api Standard 579-1/asme ffs-1, Fitness-For-Ser-vice, American Petroleum Institute (api), pp. 5-30, Washington, 2016.
api Standard 653, Tank Inspection, Repair, Altera-tion, and Reconstruction, American Petroleum Ins-titute (api), pp. 1-260, Washington, 2014.
api 510, Pressure Vessel Inspection Code: Mainte-nance Inspection, Rating, Repair, and Alteration, 10th Edition, American Petroleum Institute (api), pp. 5-84, Washington, 2016.
asme B31.3-2010 Process Piping, American Petroleum Institute (api), Pennsylvania, pp, 325, 2016.
asme B31.4 Pipeline Transportation Systems for Li-quids and Slurries, pp, 5-56, Pennsylvania, 2012.
asme B31G 1, Manual for Determining the Remai-ning Strength of Corroded Pipelines: A Supplement to asme B31Code for Pressure Piping, pp, 1-30, Pen-nsylvania, 2012.
asme B31.8S, pp. 4-69, Managing System Integrity of Gas Pipelines, Pennsylvania, 2004.
dnv-rp-f206 “Riser integrity management”- Recom-mended practice Det Norske Veritas, que establece los elementos de un Sistema de gestión para “riser, pp, 4-56, Norway, 2008. [Online]. Disponible en http://rules.dnvgl.com/docs/pdf/dnv/codes/docs/2008-04/RP-F206.pdf
dnv-rp-f116 “Integrity management of subma-rine pipline systems”- recommended practice Det Norske Veritas, pp. 1-10, Norway, 2015. [Online]. Disponible en https://rules.dnvgl.com/docs/pdf/dnv/codes/docs/2015-02/RP-F116.pdf
dnv-rp-0002 “Integrity management of subsea pro-duction systems”-recommended practice det norske veritas, pp. 5-25, Norway, 2014. [Online]. Dispo-nible en https://rules.dnvgl.com/docs/pdf/dnvGL/RP/2014-11/dnvGL-RP-0002.pdf
hse-uk, Health and Safety Executive, Structural integrity management framework for fixed jacket structures, pp. 1-100, Liverpool, 2009.
nace International report, International measure-ments of prevention, application, an economics of corrosion technologies study, p. 60, Houston, 2016
iso 55001, Gestión de activos -sistemas de gestión- requisitos, Suiza, pp. 5-18, 2014.
dnv-os-f101, Submarine Pipeline Systems, recom-mended practice det norske veritas, pp. 1-51, Norway, 2012. [Online]. Disponible en https://rules.dnvgl.com/docs/pdf/dnv/codes/docs/2012-08/Os-F101.pdf
iec en 61508, International Standard for Electrical, Electronic and Programmable Electronic Safety Re-lated Systems, p. 23, International Electrotechnical Commission (iec), Suiza, 2010.
inspectra srl, “Pres2015 Rev. 3_hds 3d”, documento interno, 2016, pp 1-15.
Enios (Palladio), “Library pictures”, Documento interno, pp. 1-32, mar. 2017
Instituto Andaluz de Patrimonio Histórico y Julián Martínez García, La Cueva de Los Letreros: des-de Góngora Martínez al láser3D, pp. 21-33, 2013. [Online]. Disponible en https://dialnet.unirioja.es/ejemplar/456360
Derechos de autor 2017 Ingeniería solidaria

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Compromiso ético y cesión de derechos
El autor debe declarar que su trabajo es original e inédito y que no se ha postulado a evaluación simultánea para su publicación por otro medio. Además, debe asegurar que no tiene impedimentos de ninguna naturaleza para la concesión de los derechos previstos en el contrato.
El autor se compromete a esperar el resultado de evaluación de la revista Ingeniería Solidaria, antes de considerar su presentación a otro medio; en caso de que la respuesta de publicación sea positiva, adicionalmente, se compromete a responder por cualquier acción de reivindicación, plagio u otra clase de reclamación que al respecto pudiera sobrevenir por parte de terceros.
Asimismo, debe declarar que, como autor o coautor, está de acuerdo por completo con los contenidos presentados en el trabajo y ceder todos los derechos patrimoniales, es decir, su reproducción, comunicación pública, distribución, divulgación, transformación, puesta a disposición y demás formas de utilización de la obra por cualquier medio o procedimiento, por el término de su protección legal y en todos los países del mundo, al Fondo Editorial de la Universidad Cooperativa de Colombia, de manera gratuita y sin contraprestación presente o futura.