• Research Articles

    Model Reference Adaptive Control with Smith Predictor Using the MIT Rule for a Two-Degree-of-Freedom Shake Table

    Vol. 9 No. 16 (2013)
    Published: 2014-04-10
    Rafael Augusto Nuñez Rodríguez
    Unidades Tecnológicas de Santander

    Shake tables have generally been used for civil structure analysis, as they allow the user to estimate and analyze a scale model’s dynamic response to a real earthquake. Many of these systems are built using linear actuators which allow the application of classic control techniques. This article details the implementation of a model reference adaptive control (MRAC) system using the MITC rule with Smith predictor on a two degree-of-freedom shake table powered by a three-phase motor coupled to a cam and connecting rod mechanism. The non-linear characteristics of this equipment, and the high degree of uncertainty and dead time, require the use of advanced control techniques. The MIT rule is the original focus for the MRAC, and a Smith predictor scheme is simultaneously used to compensate for system response delays. The control system is implemented on a 32-bit Microchip® platform connected to a host.

    Keywords: adaptive control, cam and connecting rod mechanism, Smith predictor, MIT rule

    How to Cite

    [1]
    R. A. Nuñez Rodríguez, “Model Reference Adaptive Control with Smith Predictor Using the MIT Rule for a Two-Degree-of-Freedom Shake Table”, ing. Solidar, vol. 9, no. 16, pp. 89–95, Apr. 2014, doi: 10.16925/in.v9i16.531.

    K. Benjelloun, H. Mechlih y E. Boukas, “A Modified Model Reference Adaptive Control Algorithm for dc Servomotor”. Second ieee Conference on Control Applications, Vancouver, B. C., Vol. 2, pp. 941‑946, 1993.

    J. Tu, S. Jiang y D. Stoten, “The Seismic Response Reduction by Using Model Reference Adaptive Control Algorithm”. Mechanic Automation and Control Engineering (mace), pp.1215-1218, 2010.

    J. Z. Chen, “Analysis of the Electro-hydraulic Servo Shaking Table with Flexible Payload”. Technology, pp. 708‑713, 2009.

    K. I. Seki, “Adaptive Compensation for Reaction Force With Frequency Variation in Shaking Table Systems”. IEEE Transactions on Industrial Electronics, pp. 3864‑3871, 2009.

    H. H. Gavin, “Control Objectives for Seismic Simulators”. Control, 2009, pp. 3932‑3937.

    K. I. Seki, “Reaction Force Compensation With Frequency Identifier in Shaking Table Systems”. Control, 2010, pp. 673‑678,

    C. Esparza, R. Nunez y F. Gonzalez, “Model Reference Adaptive Position Controller with Smith Predictor for a Shaking-Table in two Axes”. micai, 2013, pp. 271‑282.

    F. R. Rubio y M. J. L. Sanchez, Control Adaptativo y Robusto, Sevilla: Secretariado de Publicaciones de la Universidad de Sevilla, 1996.

    K. Astrom y Wittenmark, Adaptive Control, Lund: Addison-Wesley Longman Publishing Co., 1994.

    P. Ioacnou, “Model Reference Adaptive Control”. The Control Handbook, 2000, pp. 847-858.

    J. E. Normey y E. F. Camacho, “Prediccion para control: una panoramica del control de procesos con retardo”. Revista Iberoamericana de Automática e Informática Industrial, Vol. 3, No. 4, pp. 5-25, 2006.

    J. Stellet, “Influence of Adaptation Gain and Reference Model Parameters on System Performance for Model Reference Adaptive Control”. World Academy of Science, Engineering and Technology, 2011, pp. 1768‑1773.

    T. H. Fryza, “Video signals transparency in consequence of 3d‑dct transform”. Radioelektronika 2003 Conference Proceedings, 2003, pp. 127‑130.

    D. R. Montgomery, Applied Statistics and Probability for Engineers,3ra. ed. ny: John Wiley & Sons, 2003.

    MÉTRICAS
    ARTICLE VIEWS: 1778
    PDF VIEWS: 2481
    Metrics
    Metrics Loading ...
    https://plu.mx/plum/a/?doi=10.16925/in.v9i16.531