• Investigación

    Innovation in the Design ofFour-Bar Mechanisms (FBM)

    Vol. 20 No. 2 (2024)
    Published: 2024-05-07

    integrated application of Hlawka-Grashoff inequalities together with PID type controllers with MatLab

    Alexandra Carolina Medina Lelek
    Universidad Distrital Francisco José de Caldas
    Jhon Sebastián Delgado Almendrales
    Universidad Distrital Francisco José de Caldas

    Introduction: This research carries out an applied and exploratory study of four-bar mechanisms (FBM), focusing on geometric constraints for an advanced analysis that facilitates the understanding of design, construction, and kinematics, aimed at practical applications in engineering and education.
    Problem: Traditionally, FBM design has been based on the theory of mechanisms and machines, without incorporating advanced geometric mathematical constraints such as the Hlawka inequality. This omission limits the ability to comprehensively optimize these systems for specific applications.
    Objective: Develop software in Matlab that integrates mathematical criteria based on the Hlawka and Grashof inequalities, also applying the Lagrangian for kinematic analysis and PI, PD, and PID controllers for system dynamics using FBM.
    Methodology: An integrated approach that combines geometric, kinematic, and control analysis was used for FBM, developing an algorithm based on the Hlawka inequality. It was complemented by the creation of software in Matlab that adjusts drivers according to Grashof’s law. Validation was performed using graphical comparisons and mean absolute error (MAE) analysis with a relevant case study.
    Results: This project highlights the potential of an innovative mathematical approach in the design of four-bar mechanisms (FBM), significantly enriching their practical and training applications. Furthermore, it sets an important precedent for future research, proposing new avenues of study and exploration in advanced kinematics and mechatronic design, thus paving the way for innovative developments in fields related to engineering and technical education.
    Conclusion: This project establishes a baseline for applications of FBM synthesis in control implementations and brings the user closer to the manipulation of parameters and variables through software that guarantees the understanding of the phenomenon for the design and construction of devices.
    Originality: This study introduces a novel approach by integrating the Hlawka inequality into FBM design, establishing a pioneering framework for future research and technological development.
    Limitations: Restrictions of the study arose from the paucity of specific comparative data available, underscoring the need for future research for further evaluation.

    Keywords: Four-bar mechanisms, Hlawka inequality, Grashof's law, Matlab software, PID controllers, Mechatronic design.

    How to Cite

    [1]
    A. C. Medina Lelek and J. S. Delgado Almendrales, “Innovation in the Design ofFour-Bar Mechanisms (FBM): integrated application of Hlawka-Grashoff inequalities together with PID type controllers with MatLab”, ing. Solidar, vol. 20, no. 2, pp. 1–26, May 2024, doi: 10.16925/2357-6014.2024.02.09.

    [1] M. Stanisic, “Mechanisms and Machines: Kinematics, Dynamics and Synthesis,” Cengage Learning, 2014.

    [2] K. Waldron, G. Kinzel, S. Agrawal, Kinematics, Dynamics and Design of Machinery. Wiley, 2016.

    [3] J. Uicker, G. Pennock, J. Shigley, Theory of Machines and Mechanisms. Oxford University Press, 2010.

    [4] R. Norton, Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines. McGraw-Hill Education, 2011.

    [5] J. E. Shigley, C. R. Mischke, Theory of Machines and Mechanisms. New York, McGraw-Hill, 2001.

    [6] H. Mabie, C. Reinholtz, Mechanisms and Dynamics of Machinery. Wiley, 1987.

    [7] J. Shigley, J. Uiker, Teoría de Máquinas y Mecanismos, México, McGraw-Hill, 2001.

    [8] H. Vacca Gonzalez, J. Ramos Fernández, N. Conde González, La desigualdad de Hlawka: exploración geométrica para construcción de cuadriláteros, 2021.

    [9] B. Baykus, E. Anli, I. Ozkol, “Design and kinematics analysis of a parallel mechanism to be utilized as a luggage door by an analogy to a fourbar mechanism,” Engineering, vol. 3, no. 4, pp. 411-421, Apr. 2011.

    [10] N. Farhat, V. Mata, D. Rosa, J. Fayos, “A procedure for estimating the relevant forces in the human knee using a four-bar mechanism,” Comput. Methods Biomech. Biomed. Engin., vol. 13, no. 5, pp. 577-587, Mar. 2010.

    [11] H. Pinto, “Diseño óptimo de mecanismos de cuatro barras para generación de movimiento con restricciones de montaje y ángulo de transmisión”, M.S. thesis, Universidad Nacional de Colombia, Manizales, Colombia, 2007.

    [12] C. Galeano, C. Duque, and D. Garzón, “Aplicación de diseño óptimo dimensional a la síntesis de posición y velocidad en mecanismos de cuatro barras,” Rev. Fac. Ing. Univ. Antioquia, no. 47, pp. 129-144, Mar. 2009.

    [13] K. J. Åström and T. Hägglund, Advanced PID Control, ISA—The Instrumentation, Systems, and Automation Society, 2006.

    [14] ACIEM-Asociación Colombiana de Ingenieros Eléctricos, Mecánicos y Afines, “Caracterización profesional de ocho especialidades de la ingeniería – Competencias y funciones de los profesionales recién egresados,” ACIEM, Bogotá, Colombia, 2006.

    [15] L. Aristizábal, J. Ramírez, J. Correa, and D. Flórez, “Implementación de ayudas didácticas para el estudio y la enseñanza de mecanismos,” presented at the Encuentro Int. Educ. Ing. EIEI, Segundo Congreso Latinoamericano de Ingeniería: Retos de la Formación de Ingenieros en la Era Digital, Cartagena, 2019.

    [16] V. Torres Reyes, “Desarrollo de un mecanismo de cuatro barras para su uso en la enseñanza,” 2009.

    [17] W. Rudin, Functional Analysis, 2nd ed. New York, NY, USA: McGraw-Hill, 1991.

    [18] E. Sakar Kilinç, “Dynamic Analysis of a Flexible Four Bar Mechanism Using Matlab Simulink,” 2010.

    [19] F. Freudenstein, “On the Variety of Motions Generated by Mechanisms,” ASME J. Eng. Ind., vol. 84, pp. 156–159, 1962.

    [20] M. Arda, “Dynamic analysis of a four-bar linkage mechanism,” Int. Sci. J. Mach. Technol. Mater., vol. 14, no. 5, pp. 186-190, 2020.

    [21] E. Haug, Computer Aided Kinematics and Dynamics of Mechanical Systems: Basic Methods.

    Prentice Hall College, 1989.

    [22] A. Shabana, Dynamics of Multibody Systems. Cambridge Univ. Press, 2013.

    [23] P. Nikravesh, Computer-Aided Analysis of Mechanical Systems. Prentice Hall, 1988.

    [24] J. Wittenburg, Dynamics of Multibody Systems. Springer, 2008.

    [25] P. Nikravesh, Planar Multibody Dynamics: Formulation, Programming and Applications. CRC

    Press, 2007.

    [26] M. Coutinho, Dynamic Simulations of Multibody Systems. Springer, 2001.

    [21] E. Haug, Computer Aided Kinematics and Dynamics of Mechanical Systems: Basic Methods. Prentice Hall College, 1989.

    [22] A. Shabana, Dynamics of Multibody Systems. Cambridge Univ. Press, 2013.

    [23] P. Nikravesh, Computer-Aided Analysis of Mechanical Systems. Prentice Hall, 1988.

    [24] J. Wittenburg, Dynamics of Multibody Systems. Springer, 2008.

    [25] P. Nikravesh, Planar Multibody Dynamics: Formulation, Programming and Applications. CRC Press, 2007.

    [26] M. Coutinho, Dynamic Simulations of Multibody Systems. Springer, 2001.

    [27] F. Amirouche, Fundamentals of Multibody Dynamics: Theory and Applications. Birkhäuser, 2005.

    [28] J. Font-Llagunes, Multibody Dynamics: Computational Methods and Applications. Springer, 2016.

    [29] Z. Terze, Multibody Dynamics: Computational Methods and Applications. Springer, 2014.

    [30] A. Engineering, “SAM,” Available: https://www.artas.nl/es/sam. [Accessed: Feb. 2017].

    [31] S. Lab, “Universal Mechanism,” Available: http://www.universalmechanism.com/en/pages/index.php?id=1. [Accessed: Jan. 2017].

    [32] CompMech, “GIM,” Univ. del País Vasco. Available: http://www.ehu.eus/compmech/software/. [Accessed: Jan. 2017].

    [33] D. Rector, “Linkage,” Available: http://blog.rectorsquid.com/linkage-mechanism-designer-and-simulator/. [Accessed: Jan. 2017].

    [34] SoftIntegration, “Ch Mechanism Toolkit,” Available: https://www.softintegration.com/webservices/mechanism/. [Accessed: Jan. 2017].

    [35] A. Schmidt, “MESA VERDE Generation and Application of Complete simulation models for multibody systems,” Veh. Syst. Dyn., vol. 22, no. 1, pp. 158–161, 1993.

    [36] P. Masarati, M. Morandini, and P. Mantegazza, “An efficient formulation for general-purpose multibody/multiphysics analysis,” ASME J. Comput. Nonlinear Dyn., vol. 9, no. 4, pp. 1–9, 2014.

    [37] É. Portilla Flores, O. Avilés Sánchez, R. Piña Quintero, P. Niño Suárez, E. Moya Sánchez, and M. Molina Vilchis, “Análisis cinemático y diseño de un mecanismo de cuatro barras para falange proximal de dedo antropomórfico,” Cienc. Ing. Neogranadina, 2010.

    [38] J. Arias González, “Cálculo y diseño de mecanismo de barras configurables,” Escuela Técnica Superior de Ingeniería, 2013.

    [39] J. Hurel, J. Amaya, F. Flores, C. Calderon, and N. Suarez, “Análisis Cinemático y Dinámico del Mecanismo de Cuatro Barras de una Máquina de Ejercicios,” 2018.

    [40] S. M. H. Cohan and D. C. Yang, “Mobility analysis of planar four-bar mechanisms through the parallel coordinate system,” 1986.

    [41] J. Cañón Rodríguez and A. Espinosa Bedoya, “Aplicación de modelos híbridos en la síntesis óptima de mecanismos de cuatro barras,” Univ. Nac. Colombia, 2004.

    [42] D. Machado, G. Herrera, J. Roldán, and J. Díaz, “Una herramienta computacional didáctica para el análisis cinemático de mecanismos planos de cuatro barras,” Rev. UIS Ing., vol. 14, no. 1, pp. 59–69, Jan./Jun. 2015.

    [43] R. Rincón Durán, J. A. Niño Vega, and F. H. Fernández Morales, “Robot hexápodo para la enseñanza de mecanismos para la transformación de movimientos,” Rev. Interam. Investig. Educ. Pedagogía RIIEP, vol. 14, no. 1, pp. 107–120, 2021, doi: https://doi.org/10.15332/25005421.5876.

    [44] D. González, E. Estrada, and J. Roldán, “Aplicación Android para el estudio de mecanismos planos de cuatro barras,” Entre Cienc. Ing., vol. 10, no. 20, pp. 41–51, 2016.

    [45] S. Doering, “Quadrilateral Inequality Exploration – GeoGebra,” GeoGebra. Available: https://www.geogebra.org/m/t7GTsNv9. [Accessed: Apr. 14, 2024].

    [46] A. Schardl, “Quadrilateral Inequality – GeoGebra,” GeoGebra. Available: https://www.geogebra.org/m/q3gq5nnc. [Accessed: Apr. 21, 2024].

    [47] K. Ray, “Properties of Quadrilaterals – GeoGebra,” GeoGebra. Available: https://www.geogebra.org/m/cdpwsyjg. [Accessed: May 11, 2024].

    [48] C. Chiusa, “Existence of quadrilateral of given side lengths – GeoGebra,” GeoGebra. Available: https://www.geogebra.org/m/F9xS7ZcW#material/tv9Js2s6. [Accessed: May 11, 2024].

    [49] A. Guillor, “Grashof’s law – GeoGebra,” GeoGebra. Available: https://www.geogebra.org/m/xsptdbws. [Accessed: May 11, 2024].

    [50] Automeris, “WebPlotDigitizer,” Available: https://automeris.io/wpd/. [Accessed: Jul. 2024].

    [51] J. K. Pickard, J. A. Carretero, and J.-P. Merlet, “Appropriate synthesis of the four-bar linkage,” Mech. Mach. Theory, vol. 153, p. 103965, 2020, doi: 10.1016/j.mechmachtheory.2020.103965.

    MÉTRICAS
    ARTICLE VIEWS: 145
    PDF VIEWS: 199
    Metrics
    Metrics Loading ...
    https://plu.mx/plum/a/?doi=10.16925/2357-6014.2024.02.09