Impact of structure on team performance
CvLAC: https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?-cod_rh=0001730339#
email: kacevedog@correo.udistrital.edu.co
Ingeniería Industrial. Facultad de Ingeniería. Universidad Distrital Francisco José de Caldas.
email: marialopezrodriguez685@hotmail.com
Ingeniería Industrial. Facultad de Ingeniería. Universidad Distrital Francisco José de Caldas.
email: lebohorqueza@udistrital.edu.co
Introduction:
This article is product of research on business self-organization developed at the Universidad Distrital Francisco Jose de Caldas on 2019-2020 starting from that collective intelligence (CI) has been viewed as an approach that enables from the use of the interactions among the agents and between these and the environment to increase the intelligence of the system; understood as the ability to take full advantage of distributed resources and to adapt nimbly to the changing conditions of the environment
Methodology: in the first part, the conditions that may facilitate CI are explored through a review of the literature. In the second part an experiment is designed in a micro-world environment in which incorporate some of the conditions identified to facilitate the CI in the structure of a team and its performance is compared with a team that has a hierarchical structure.
Results: the teams that have a structure with facilitates CI, present on average greater performance, coordination effectiveness and adaptability, as well as better interaction dynamics among the members. These teams present higher levels of interaction, information flows and activity among the participants, reflected in the number of interventions and in the use of the resources offered in the game.
Conclusions: the increase in complexity that the application of IC inducers gives the team could be a predictor of better performances in environments of increasing complexity; in contrast to teams that have structures that reduce their complexity as the hierarchical structure.
Originality: This article provides evidence regarding the incidence of roles in the performance of the company.
Limitations: one of the main constraints is the virtual interaction between the participants and between them with the research team. Face-to-face interaction would allow more intensive use of affiliate links between participants.
S. Papert, “Desafío a la mente. Computadoras y educación,” vol. 5, Buenos Aires: Galápago, 1982.pp. 158-163.
T. W. Malone, “What is collective intelligence and what will we do about it? Collective intelli-gence: creating a prosperous world at peace,” 1st ed. 2008. pp 65-74.
A. Camacho, M. G. Merayo, and M. Núñez, “Collective intelligence and databases in eHealth: A survey,” J. Intell. Fuzzy Syst., vol. 32, no. 2, Universidad Complutense de Madrid, Spain, 2017. pp. 1485–1496 [Online]. Available: https://pdfs.semanticscholar.org /447a/6a4870 783 56123418a7c4bdda419f9865d68.pdf.
G. Hernández-Chan, A. Rodríguez-González, G. Alor-Hernández, et al., “Knowledge Acquisition for Medical Diagnosis Using Collective Intelligence,” J Med Syst., 36, 5–9 (2012), doi: https://doi.org /10.1007/s10916-012-9886-3
G. S. Hernández, E. E. Ceh, J. L. Sanchez, M. Villanueva, A. Rodríguez, and Y. Pérez, “Collective intelligence in medical diagnosis systems: A case study,” Comput. Biol. Med., vol. 74, pp. 45–53, Jul. 2016, doi: https://doi.org /10.1016/j.compbiomed.2016.04.016
Y. Pérez, G. Alor, G. Cortes, and A. Rodríguez, “Collective intelligence as mechanism of medical diagnosis: The iPixel approach,” Expert Syst. Appl., vol. 40, no. 7, pp. 2726–2737, 2013, doi: http://dx.doi.org /10.1016 / j.eswa.2012.11.020
A. Tacchella et al., “Collaboration between a human group and artificial intelligence can im-prove prediction of multiple sclerosis course: a proof-of-principle study,” F1000 Research, vol. 6, no. 0, p. 2172, Dec. 2017, doi: http://dx.doi.org /10.12688/f1000research.13114.
B. Brehmer, Some reflections on microworld research. In S. G. Schifflet, L. R. Elliott, E. Salas, and M. D. Coovert (Eds.), “Scaled worlds: Development, validation and applications” (pp. 22-36). Aldershot, England: Ashgate, 2004.
Jobidon, et al “Adaptability in Crisis Management: The Role of Organizational Structure”. Canada, 2010.pp 5-12
J.B. Smith, “Collective Intelligence in Computer-Based Collaboration”. The University of North Carolina. 1994. [Online]. Available: http://www.cs.unc.edu/Research/jbsArchive/docs/CollectiveIntelligence/CollectiveIntelligenceFrontMatter.pdf pp. 176-201
P. Levy. “Collective Intelligence: Mankind’s Emerging World in Cyberspace”.United States. 1997. [Online]. Available: https://dl.acm.org /doi/book/10.5555/550283
L. Longo, P. Dondio, S. Barrett, “Enhancing Social Search: A Computational Collective Intelligence Model of Behavioural Traits, Trust and Time”.2010, pp 48-53, doi: http://dx.doi.org /10.1007/978-3-642-17155-0_3
M. Newman, A-L. Barabási, and D. J. Watts, (Eds.). “The Structure and dynamics of networks”.Princeton University Press, 2006.pp 415-433[14] M. Vidal, M. E. Cusick, A-L. Barabasi. “Interactome Networks and Human Disease”. (pp. 986-998). 2011 [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0092867 411001309)
J. R. Rodríguez., y V. Yanes, “La incertidumbre percibida del entorno como condicionante del riesgo estratégico asumido por el decisor,” Cuadernos de Economía y Dirección de la Empresa, vol. no. 25, 2005, pp.5-28. [Online]. Available: https://www.redalyc.org/articulo.oa?id=80717237001
T. Fuentes, M. Luna, “Analysis of three planning models under five principles of complex thinking,” vol 5, no 2. pp 2-16, 201. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=3895231
D. Rincón, J. Valdes, L. Bohórquez, “Collective Intelligence for Decision-Making in Complex Environments: Literature Review,” In: Iliadis L., Maglogiannis I., Plagianakos V. (eds) Artificial Intelligence Applications and Innovations. AIAI 2018. IFIP Advances in Information and Communication Technology, vol 519. Springer, Cham, doi: https://doi.org /10.1007/978-3 -319-92007-8_40
Singh, Vivek & Singh, Garima & Pande, Suparna, “Emergence, Self-Organization and Collective Intelligence -- Modeling the Dynamics of Complex Collectives,” in Social and Organizational Settings. Proceedings - UKSim 15th International Conference on Computer Modelling and Simulation, UKSim 2013. 182-189. 10.1109/UKSim.2013.77.
Figure 1. Made by the authors.
Figure 2. Made by the authors.
Figure 3. Made by the authors.
Rappi 2019. p.1 [Online]. Available: https://www.rappi.com/jobs/teams
Vueltap 2019. p.1 [Online]. Available: https://servicios.vueltap.co/blog /
Waze 2019. p.1 [Online]. Available: https://medium.com/waze[25] Glovo 2019. p.1 [Online]. Available: https://glovoapp.com/es/faq
Table 1. Made by the authors.
Table 2. Made by the authors.
Table 3. Made by the authors.
C.E. Toca Torres, “Swarm intelligence: approach to the analysis of networks”2014, vol 30, pp 262-266, doi: https://doi.org /10.1016/j.estger.2014.01.014
J.F. Zuluaga, “La gestión crítica del conocimiento y la inteligencia colectiva y su relación con el desarrollo social,”vol. 11, no. 2, 2015, pp. 180-184., doi: https://doi.org /10.18041/entramado.2015v11n1.22231%20
A. Grasso and G. Convertino, “Collective intelligence in organizations: Tools and studies,” Computer Supported Cooperative Work (CSCW), vol. 21, no. 4-5, pp. 357-369, doi: 10.1007/s10606-012-9165-3
G. Convertino., A. Grasso., G. De Michelis, D.R. Millen, and E. H. Chi, “Clorg: Collective intelligen-ce in organizations,” In Proceedings of the 16th ACM international conference on Supporting group work. 2010. pp.355-358, doi: https://doi.org /10.1145/1880071.1880149
S. Suran, V. Pattanaik, and D. Draheim, “Frameworks for Collective Intelligence: A Systematic Literature Review”. ACM Computing Surveys (CSUR) 2020, 53(1), pp. 1-36, doi: https://doi.org /10.1145/3368986
A. Nagalakshmi and S. Joglekar, “Collective Intelligence Applications -- Algorithms and Visualization,” 2011 Second International Conference on Emerging Applications of Information Technology, Kolkata, 2011, pp. 25-30, doi: 10.1109/EAIT.2011.82.
L. Huang, H. Zhang, G. Chen, Y. Liu and D. Li, “From turing machine intelligence to collective intelligence,” 2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems, Hangzhou, 2012, pp. 1171-1177, doi: 10.1109/CCIS.2012.6664568.
C. Merino M. “Inteligencia e identidad colectiva en las organizaciones” 2016. pp 15-19.
K. Cepeda-Susatama, K. Durango-Ruiz, L. Bohórquez- Arévalo, “Modelación y simulación en agentes como alternativa para el estudio de las organizaciones empresariales,” Ingeniería Solidaria, vol. 13, n. o 22, mayo de 2017, pp. 103-119, doi: http://dx.doi.org /10.16925/in.v13i22.1838
L. Y. Gualdrón-Prieto, J. M. Acosta-Romero y L. E. Bohórquez-Arévalo, “Estructuras organi-zaciones y adaptación a las condiciones cambiantes del entorno: retos e implicaciones,” Ingeniería Solidaria, vol. 13, no. 23, pp. 106-122, Sept. 2017, doi: https://doi.org /10.16925/in.v23i13.1983
E. de Ávila y A. Díaz, “Articulación del sistema ferroviario con los puertos marítimos y flu-viales colombianos como alternativa estratégica para mejorar la competitividad inter-nacional,” Conocimiento Global, vol. 2, no. 1, pp. 69-73. 2017. [Online]. Available: http://conocimientoglobal.org /revista/index.php/cglobal/article/view/18
A. Castro, A. Caballero y J. Palacios, “La competitividad potencial del puerto de Cartagena: una oportunidad para el comercio exterior,” Aglala, vol. 10, no. 2, pp. 111-121. 2019. [Online]. Available: http://revistas.curnvirtual.edu.co/index.php/aglala/article/view/1180
A. Castro, “El coaching como puntos de fortalecimiento del profesionalismo del docen-te,” Enfoque Disciplinario, vol. 2, no. 1, pp. 15-22. 2017. [Online]. Available: http://enfoquedis-ciplinario.org /revista/index.php/enfoque/article/view/14
A. C. Lemus Pinto, C. A. Garzón Sogamoso, y G. M. Tarazona Bermúdez, “Tic en gestión de la cadena de suministro bogotana,” Vis. Electron., vol. 10, no. 2, pp. 195-202, 2016.
C. H. Caicedo y A. Smida, “Intensidad informacional para la longitudinalidad asistencial en sistemas de salud,” Visión electrónica, vol. 10, no. 1, pp. 83-95, jun. 2016, doi: https://doi.org /10.14483/22484728.11612
J. F. Herrera-Cubides, P. A. Gaona-García, C. E. Montenegro-Marín, S. Sánchez-Alonso, y D. Martin-Moncunill, “Abstraction of linked data’s world,” Visión electrónica, vol. 13, no. 1, pp. 57-74, feb. 2019, doi https://doi.org /10.14483/22484728.14397
Copyright (c) 2021 Ingeniería Solidaria

This work is licensed under a Creative Commons Attribution 4.0 International License.
Cession of rights and ethical commitment
As the author of the article, I declare that is an original unpublished work exclusively created by me, that it has not been submitted for simultaneous evaluation by another publication and that there is no impediment of any kind for concession of the rights provided for in this contract.
In this sense, I am committed to await the result of the evaluation by the journal Ingeniería Solidaría before considering its submission to another medium; in case the response by that publication is positive, additionally, I am committed to respond for any action involving claims, plagiarism or any other kind of claim that could be made by third parties.
At the same time, as the author or co-author, I declare that I am completely in agreement with the conditions presented in this work and that I cede all patrimonial rights, in other words, regarding reproduction, public communication, distribution, dissemination, transformation, making it available and all forms of exploitation of the work using any medium or procedure, during the term of the legal protection of the work and in every country in the world, to the Universidad Cooperativa de Colombia Press.