Electrical Impedance Tomography : Hardware Fundamentals And Medical Applications
Department of electronics, instrumentation and control.
email: andresescobar@unicauca.edu.co
Department of electronics, instrumentation and control.
email: mosquera@unicauca.edu.co
Department of electronics, instrumentation and control.
email: caferen@unicauca.edu.co
Introduction: The following article shows a systematic review of publications on hardware topologies used to capture and process electrical signals used in Electrical Impedance Tomography (EIT) in medical applications, as well topicality of the EIT in the field of biomedicine. This work is the product of the research project “Electrical impedance tomography based on mixed signal devices”, which took place at the University of Cauca during the period 2017-2019.
Objective: This review describes the operation, topicality and clinical use of Electrical Impedance Tomography systems.
Methodology: A systematic review was carried out in the IEEE-Xplore, ScienceDirect and Scopus databases. After the classification, 106 relevant articles were obtained on scientific studies of EIT systems; applications dedicated to the analysis of medical images.
Conclusions: Impedance-based methods have a variety of medical applications as they allow for the reconstruction of a body region, by estimating the conductivity distribution inside the human body; this is without exposing the patient to the damaging effects of radiation and contrast elements. Impedance-based methods are therefore a very useful and versatile tool in the treatment of diseases such as: monitoring blood pressure, detection of atherosclerosis, localization of intracranial hemorrhages, determining bone density, among others.
Originality: It describes the necessary components to design an EIT system, as well as the design characteristics depending on the pathology to be visualized.
L. A. Geddes and L. E. Baker, “The specific resistance of biological material-A compendium of data for the biomedical engineer and physiologist,” Medical and biological engineering, vol. 5, no. 3. pp. 271–293, 1967. [Online]. doi: 10.1007/BF02474537.
H. Wang, H. Hu, L. Wang, and H. Wang, “Image reconstruction for an Electrical Capacitance Tomography (ECT) system based on a least squares support vector machine and bacterial colony chemotaxis algorithm,” Flow Measurement and Instrumentation, vol. 27. pp. 59–66, 2012. [Online]. doi: https://doi.org /10.1016/j.flowmeasinst.2012.05.006.
H. Sohal, H. Wi, A. L. McEwan, E. J. Woo, and T. I. Oh, “Electrical impedance imaging system using FPGAs for flexibility and interoperability,” BioMedical Engineering OnLine, vol. 13. 2014. [Online]. doi: 10.1186/1475-925X-13-126.
S. Liu, X. Deng, Z. Jiang, and Y. Tang, “Hardware Design of Tuber Electrical Resistance Tomography System Based on the Soil Impedance Test and Analysis,” MATEC Web of Conferences, vol. 68, p. 12008, Aug. 2016. [Online]. doi: 10.1051/matecconf/20166812008.
S. Khan, P. Manwaring, A. Borsic, and R. Halter, “FPGA-based voltage and current dual drive system for high frame rate electrical impedance tomography,” IEEE Transactions on Medical Imaging, vol. 34, no. 4. pp. 888–901, 2015. [Online]. doi: 10.1109/TMI.2014.2367315.
M. Proenca et al., “Non-invasive monitoring of pulmonary artery pressure at the bedside,” in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, pp. 4236–4239. [Online]. doi: 10.1109/EMBC.2016.7591662.
K. Y. Aristovich, B. C. Packham, H. Koo, G. S. dos Santos, A. McEvoy, and D. S. Holder, “Imaging fast electrical activity in the brain with electrical impedance tomography,” NeuroImage, vol. 124, no. Pt A. pp. 204–213, 01-Jan-2016. [Online]. doi: 10.1016/j.neuroimage.2015.08.071.
C. Li, S. Balla-Arabé, and F. Yang, “Embedded multi-spectral image processing for real-time medical application,” Journal of Systems Architecture.
Guizhi Xu et al., “The Acquisition Hardware System with Direct Digital Synthesis and Filtered Back-Projection Imaging in Electrical Impedance Tomography,” 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. pp. 7758–7761, 2005. [Online]. doi: 10.1109/IEMBS.2005.1616311.
T. A. Khan and S. H. Ling, “Review on electrical impedance tomography: Artificial intelli-gence methods and its applications,” Algorithms, vol. 12, no. 5, 2019. [Online]. doi: 10.3390/a12050088.
A. Adler, P. O. Gaggero, and Y. Maimaitijiang, “Adjacent stimulation and measurement pat-terns considered harmful,” Physiological Measurement, vol. 32, no. 7, pp. 731–744, Jul. 2011. [Online]. doi: 10.1088/0967-3334/32/7/S01.
D. C. Barber and A. D. Seagar, “Fast reconstruction of resistance images,” Clinical Physics and Physiological Measurement, vol. 8, no. 4A, pp. 47–54, Nov. 1987. [Online]. doi: 10.1088/ 0143-0815/8/4A/006.
T. Schlebusch, S. Nienke, S. A. Santos, and S. Leonhardt, “Bladder volume estimation from electrical impedance tomography,” in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, vol. 35, no. 9, pp. 6441–6444. [Online]. doi: 10.1109/EMBC.2013.6611029.
C. Polk and E. Postow, Handbook of Biological Effects of Electromagnetic Fields, -2 Volume Set. CRC press, 1995.
M. Guermandi, R. Cardu, E. F. Scarselli, and R. Guerrieri, “Active electrode IC for EEG and electrical impedance tomography with continuous monitoring of contact impedance,” IEEE Transactions on Biomedical Circuits and Systems, vol. 9, no. 1. pp. 21–33, 2015. [Online]. doi: 10.1109/TBCAS.2014.2311836.
M. Soleimani, C. Gómez-Laberge, and A. Adler, “Imaging of conductivity changes and elec-trode movement in EIT,” Physiological Measurement, vol. 27, no. 5, pp. S103–S113, May 2006. [Online]. doi: 10.1088/0967-3334/27/5/S09.
D. Leonhäuser et al., “Evaluation of electrical impedance tomography for determination of urinary bladder volume: comparison with standard ultrasound methods in healthy volun-teers,” Biomedical engineering online, vol. 17, no. 1. BioMed Central, p. 95, 2018. [Online]. doi: 10.1186/s12938-018-0526-0.
S. B. Ayati, K. Bouazza-Marouf, and D. Kerr, “In vitro localisation of intracranial haematoma using electrical impedance tomography semi-array,” Medical Engineering & Physics, vol. 37, no. 1, pp. 34–41, Jan. 2015. [Online]. doi: 10.1016/j.medengphy.2014.10.001.
O. L. Silva, R. G. Lima, T. C. Martins, F. S. de Moura, R. S. Tavares, and M. S. G. Tsuzuki, “Influence of current injection pattern and electric potential measurement strategies in electrical im-pedance tomography,” Control Engineering Practice, vol. 58. Elsevier, pp. 276–286, 2017. [Online]. doi: 10.1016/j.conengprac.2016.03.003.
E. Malone, G. Sato dos Santos, D. Holder, and S. Arridge, “Multifrequency Electrical Impedance Tomography Using Spectral Constraints,” IEEE Transactions on Medical Imaging, vol. 33, no. 2, pp. 340–350, Feb. 2014. [Online]. doi: 10.1109/TMI.2013.2284966.
A. Koksal and B. M. Eyuboglu, “Determination of optimum injected current patterns in electri-cal impedance tomography,” Physiological Measurement, vol. 16, no. 3A, pp. A99–A109, Aug. 1995. [Online]. doi: 10.1088/0967-3334/16/3A/010.
B. H. Brown and A. D. Seagar, “The Sheffield data collection system,” Clinical Physics and Physiological Measurement, vol. 8, no. 4A, pp. 91–97, Nov. 1987. [Online]. doi: 10.1088/0143 -0815/8/4A/012.
S. Leonhardt et al., “Electric impedance tomography for monitoring volume and size of the urinary bladder,” Biomedizinische Technik/Biomedical Engineering, vol. 56, no. 6, pp. 301–307, Jan. 2011. [Online]. doi: 10.1515/BMT.2011.022.
A. Romsauerova, A. McEwan, L. Horesh, R. Yerworth, R. H. Bayford, and D. S. Holder, “Multi-frequency electrical impedance tomography (EIT) of the adult human head: initial findings in brain tumours, arteriovenous malformations and chronic stroke, development of an analysis method and calibration,” Physiological Measurement, vol. 27, no. 5, pp. S147–S161, May 2006. [Online]. doi: 10.1088/0967-3334/27/5/S13.
E. Santos and F. Simini, “Alternativas de proyecto e implementación de circuitos y de progra-mas de reconstrucción tendientes a un tomógrafo por impedancia eléctrica para la presen-tación compacta del estado edemático de cortes torácicos en tiempo real.” p. 255, 2014.
K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting systematic mapping studies in software engineering: An update,” Information and Software Technology, vol. 64. Elsevier, pp. 1–18, 01-Aug-2015. [Online]. doi: 10.1016/j.infsof.2015.03.007.
B. Lachmann, O. L. Concept, and D. Gommers, “Respiratory Cycle in 90 Images,” no. February. pp. 20–22, 2010.
Dräger, “Dräger PulmoVista ® 500 ICU Ventilation and Respiratory Monitoring.” [Online]. Available: https://www.draeger.com/Products/Content/pulmovist, 2017.
T. I. Oh, H. Koo, K. H. Lee, and S. M. Kim, “Validation of a multi-frequency electrical impedan-ce tomography ( mfEIT ) system KHU Mark1 : impedance spectroscopy and time-difference imaging,” vol. 295. [Online]. doi: 10.1088/0967-3334/29/3/002.
H. Wi, H. Sohal, A. L. McEwan, E. J. Woo, and T. I. Oh, “Multi-frequency electrical impedan-ce tomography system with automatic self-calibration for long-term monitoring,” IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 1. pp. 119–128, 2014. [Online]. doi: 10.1109/TBCAS.2013.2256785.
X. Yue and C. McLeod, “FPGA design and implementation for EIT data acquisition,” Physiological Measurement, vol. 29, no. 10, pp. 1233–1246, Oct. 2008. [Online]. doi: 10.1088/0967-3334/29/10/007.
R. J. Halter, A. Hartov, and K. D. Paulsen, “A Broadband High-Frequency Electrical Impedance Tomography System for Breast Imaging,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 2. IEEE, pp. 650–659, Feb-2008. [Online]. doi: 10.1109/TBME.2007.903516.
S. Kimel-naor, S. Abboud, and M. Arad, “Parametric electrical impedance tomography for me-asuring bone mineral density in the pelvis using a computational model,” Medical Engineering and Physics, vol. 0. Elsevier Ltd, pp. 1–7, 2016. [Online]. doi: 10.1016/j.medengphy.2016.04.013.
S. A. Santos, A. Robens, A. Boehm, S. Leonhardt, and D. Teichmann, “Supplementary Materials : System Description and First Application of an FPGA-Based Simultaneous Multi-Frequency Electrical Impedance Tomography mfDummy Amplitude mfDummy Amplitude and Phase all same scale Selbstversuche M1,” no. 5. pp. 2–4, 2016. [Online]. doi: 10.3390/s16081158.
X. Shi et al., “Design and implementation of a high-precision electrical impedance tomogra-phy data acquisition system for brain imaging,” in 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2016, pp. 9–15. [Online]. doi: 10.1109/BioCAS.2016.7833712.
P. Artem and S. Dmitry, “FPGA technologies in medical equipment: Electrical impedance to-mography,” Proceedings of IEEE East-West Design and Test Symposium, EWDTS 2013. pp. 0–3, 2013. [Online]. doi: 10.1109/EWDTS.2013.6673157.
G. Xu et al., “A 128-Electrode Three Dimensional Electrical Impedance Tomography System,” in 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 4386–4389. [Online]. doi: 10.1109/IEMBS.2007.4353310.
A. Fouchard et al., “Modular architecture of a Multi - frequency Electrical Impedance Tomography system : design and implementation,” 36th Annual International Conference of the IEEE Engineering in Medicince and Biology Society. pp. 6076–6079, 2014. [Online]. doi: 10.1109/EMBC.2014.6945015.
J. Huang, Y. Hung, J. Wang, and B. Lin, “Design of wearable and wireless electrical impedan-ce tomography system,” MEASUREMENT, vol. 78. Elsevier Ltd, pp. 9–17, 2016. [Online]. doi: 10.1016/j.measurement.2015.09.031.
M. Khalighi, B. Vosoughi Vahdat, M. Mortazavi, W. Hy, and M. Soleimani, “Practical design of low-cost instrumentation for industrial electrical impedance tomography (EIT),” 2012 IEEE I2MTC - International Instrumentation and Measurement Technology Conference, Proceedings. pp. 1259–1263, 2012. [Online]. doi: 10.1109/I2MTC.2012.6229173.
V. Tomicic and R. Cornejo, “Lung monitoring with electrical impedance tomography: techni-cal considerations and clinical applications,” Journal of Thoracic Disease, vol. 11, no. 7, pp. 3122–3135, Jul. 2019. [Online]. doi: 10.21037/jtd.2019.06.27.[42] M. Salucci and G. Oliveri, “Robust real‐time inversion of electrical impedance tomography data for human lung ventilation monitoring,” Microwave and Optical Technology Letters, vol. 61, no. 1, pp. 5–8, Jan. 2019. [Online]. doi: 10.1002/mop.31501.
J. N. G. Lima, M. S. Fontes, T. Szmuszkowicz, A. M. Isola, and A. T. Maciel, “Electrical impe-dance tomography monitoring during spontaneous breathing trial: Physiological description and potential clinical utility,” Acta Anaesthesiologica Scandinavica, p. aas.13383, May 2019. [Online]. doi: 10.1111/aas.13383.
B. Yang et al., “Comparison of electrical impedance tomography and intracranial pressure during dehydration treatment of cerebral edema,” NeuroImage: Clinical, vol. 23, p. 101909, 2019. [Online]. doi: 10.1016/j.nicl.2019.101909.
A. Everitt, B. K. Root, D. F. Bauer, and R. J. Halter, “Electrical impedance mapping for localizing evolving traumatic brain injury,” in Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging, 2019, vol. 10953, p. 30. [Online]. doi: 10.1117/12.2512292.
Y. Li et al., “Analysis of measurement electrode location in bladder urine monitoring using electrical impedance,” Biomedical engineering online, vol. 18, no. 1, p. 34, 2019.
Y.-J. Han, A. K. Khambampati, and K.-Y. Kim, “Performance analysis of EIT bladder monitoring system according to input current patterns,” Journal of IKEEE, vol. 23, no. 1, pp. 164–172, 2019. [Online]. doi: https://doi.org /10.7471/ikeee.2019.23.1.164.
S. Arad, S. Zlochiver, and M. Mahajna, “Diagnostic and monitoring electrical impedance to-mography (eit) system for osteoporosis.” Google Patents, 2019.
G. Hansen, T. Holt, and J. Dmytrowich, “Thoracic electrical impedance tomography to mini-mize right heart strain following cardiac arrest,” 2019.[Online].doi:10.4103/apc.APC_189_18.
A. M. Ambrosio et al., “Ventilation distribution assessed with electrical impedance tomogra-phy and the influence of tidal volume, recruitment and positive end-expiratory pressure in isoflurane-anesthetized dogs,” Veterinary Anaesthesia and Analgesia, vol. 44, no. 2, pp. 254–263, Mar. 2017. [Online]. doi: 10.1016/j.vaa.2016.06.003.
B. Grychtol, G. Elke, P. Meybohm, N. Weiler, I. Frerichs, and A. Adler, “Functional Validation and Comparison Framework for EIT Lung Imaging,” PLoS ONE, vol. 9, no. 8, p. e103045, Aug. 2014. [Online]. doi: 10.1371/journal.pone.0103045.
Doan Trang Nguyen et al., “Electrical Impedance Tomography for assessing Ventilation/Perfusion mismatch for Pulmonary Embolism detection without interruptions in respiration,” 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp. 6068–6071, Aug-2014. [Online]. doi: 10.1109/EMBC.2014.6945013.
K. Roubik, V. Sobota, and M. Laviola, “Selection of the Baseline Frame for Evaluation of Electrical Impedance Tomography of the Lungs,” in 2015 Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI), 2015, pp. 293–297. [Online]. doi: 10.1109/MCSI.2015.51.
A. D. Waldmann et al., “Position-dependent distribution of lung ventilation — A feasability study,” in 2015 IEEE Sensors Applications Symposium (SAS), 2015, pp. 1–6. [Online]. doi: 10.1109/SAS.2015.7133643.
C. J. C. Trepte et al., “Electrical impedance tomography (EIT) for quantification of pulmonary edema in acute lung injury,” Critical Care, vol. 20, no. 1, p. 18, Dec. 2015. [Online]. doi: 10.1186/s13054-015-1173-5.
L. Andiani, A. Rubiyanto, and Endarko, “Sensitivity analysis of thorax imaging using two-di-mensional Electrical Impedance Tomography (EIT),” Journal of Physics: Conference Series, vol. 1248, no. 1, 2019. [Online]. doi: 10.1088/1742-6596/1248/1/012009.
J. Bordes, P. Goutorbe, P. J. Cungi, M. C. Boghossian, and E. Kaiser, “Noninvasive ventilation during spontaneous breathing anesthesia: an observational study using electrical impe-dance tomography,” Journal of Clinical Anesthesia, vol. 34, pp. 420–426, Nov. 2016. [Online]. doi:10.1016/j.jclinane.2016.04.016.
J. L. Hough, A. D. Shearman, H. Liley, C. A. Grant, and A. Schibler, “Lung recruitment and endotracheal suction in ventilated preterm infants measured with electrical impedance to-mography,” Journal of Paediatrics and Child Health, vol. 50, no. 11, pp. 884–889, Nov. 2014. [Online]. doi:10.1111/jpc.12661.[59] F. Trenk et al., “Evaluation of lung ventilation distribution in chronic obstructive pulmonary disease patients using the global inhomogeneity index,” in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, pp. 5286–5289. [Online]. doi: 10.1109/EMBC.2016.7591920.
S. Heizmann, M. Baumgärtner, S. Krüger-Ziolek, Z. Zhao, and K. Möller, “3-D Lung Visualization Using Electrical Impedance Tomography Combined with Body Plethysmography,” in The 15th International Conference on Biomedical Engineering, 2014, pp. 172–175. [Online]. doi: 10.1007/978-3-319-02913-9_44.
I. Chatziioannidis, T. Samaras, G. Mitsiakos, P. Karagianni, and N. Nikolaidis, “Assessment of lung ventilation in infants with respiratory distress syndrome using electrical impedance to-mography,” Hippokratia, vol. 17, no. 2. Hippokratio General Hospital of Thessaloniki, p. 115, 2013.
F. Rossi, A. Yagui, L. Haddad, A. Deutsch, and C. Rebello, “Electrical impedance tomography to evaluate air distribution prior to extubation in very-low-birth-weight infants: a feasibility study,” Clinics, vol. 68, no. 3, pp. 345–350, Mar. 2013. [Online]. doi: 10.6061/clinics/2013(03)OA10.
B. Amm et al., “Real-time 3D electrical impedance imaging for ventilation monitoring of the lung: Pilot study,” in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014, pp. 6064–6067. [Online]. doi: 10.1109/EMBC.2014.6945012.
M. Balleza-Ordaz, E. Perez-Alday, M. Vargas-Luna, and J. P. Riu, “Tidal volume monitoring by electrical impedance tomography (EIT) using different regions of interest (ROI): Calibration equations,” Biomedical Signal Processing and Control, vol. 18, pp. 102–109, Apr. 2015. DOI:10.1016/j.bspc.2014.12.004.
K. Buzkova and J. Suchomel, “Use of electrical impedance tomography for quantitative evalua-tion of disability level of bronchopulmonary dysplasia,” in 2013 E-Health and Bioengineering Conference (EHB), 2013, pp. 1–4. [Online]. doi: 10.1109/EHB.2013.6707307.
S. Hong, J. Lee, J. Bae, and H. Yoo, “A 10.4 mW electrical impedance tomography SoC for portable real-time lung ventilation monitoring system,” in 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2014, vol. 50, no. 11, pp. 193–196. [Online]. doi:10.1109/ASSCC.2014.7008893.
M. Kim, J. Bae, and H.-J. Yoo, “Wearable 3D lung ventilation monitoring system with multi frequency electrical impedance tomography,” in 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2017, pp. 1–4. [Online]. doi: 10.1109/BIOCAS.2017.8325163.
J. Lee, U. Ha, and H. Yoo, “30-fps SNR equalized electrical impedance tomography IC with fast-settle filter and adaptive current control for lung monitoring,” in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 2016, vol. c, pp. 109–112. [Online]. doi: 10.1109/ISCAS.2016.7527182.
N. Omer, S. Abboud, and M. Arad, “Classifying lung congestion in congestive heart failure using electrical impedance - a 3D model,” in 2015 Computing in Cardiology Conference (CinC), 2015, pp. 369–372. [Online]. doi: 10.1109/CIC.2015.7408663.
Zhanqi Zhao, K. Moller, B. Vogt, I. Frerichs, and U. Muller-Lisse, “Customized evaluation sof-tware for clinical trials: An example on pulmonary function test with electrical impedance tomography,” in 2013 ICME International Conference on Complex Medical Engineering, 2013, pp. 128–133. [Online]. doi: 10.1109/ICCME.2013.6548225.
S. Ren, K. Sun, D. Liu, and F. Dong, “A Statistical Shape Constrained Reconstruction Framework for Electrical Impedance Tomography,” IEEE Transactions on Medical Imaging, no. 1, pp. 1–1, 2019. [Online]. doi: 10.1109/tmi.2019.2900031.
J. Latikka and H. Eskola, “The Resistivity of Human Brain Tumours In Vivo,” Annals of Biomedical Engineering, vol. 47, no. 3, pp. 706–713, 2019. [Online]. doi: 10.1007/s10439-018-02189-7.
B. Yang et al., “Real-time imaging of cerebral infarction in rabbits using electrical impedance tomography,” Journal of International Medical Research, vol. 42, no. 1, pp. 173–183, Feb. 2014. [Online]. doi: 10.1177/0300060513499100.
J. Gao, S. Yue, J. Chen, and H. Wang, “Classification of normal and cancerous lung tissues by electrical impendence tomography,” Bio-medical materials and engineering, vol. 24, no. 6. IOS press, pp. 2229–2241, 2014. [Online]. doi: 10.3233/BME-141035.
J. Sola, M. Proenca, and O. Chetelat, “Wearable PWV technologies to measure Blood Pressure: eliminating brachial cuffs,” in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, pp. 4098–4101. [Online]. doi: 10.1109/EMBC.2013.6610446.
J. Solà, A. Adler, A. Santos, G. Tusman, F. Suárez Sipmann, and S. H. Bohm, “Unsupervised non-invasive measurement of aortic pulse transit time by means of electrical impedan-ce tomography,” Artery Research, vol. 5, no. 4, p. 144, Dec. 2011. [Online]. doi: 10.1016/j.artres.2011.10.225.
J. Solà, A. Adler, A. Santos, G. Tusman, F. S. Sipmann, and S. H. Bohm, “Non-invasive moni-toring of central blood pressure by electrical impedance tomography: first experimental evi-dence,” Medical & Biological Engineering & Computing, vol. 49, no. 4, pp. 409–415, Apr. 2011. [Online]. doi: 10.1007/s11517-011-0753-z.
S. Leonhardt, R. Pikkemaat, O. Stenqvist, and S. Lundin, “Electrical Impedance Tomography for hemodynamic monitoring,” in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, pp. 122–125. [Online]. doi: 10.1109/EMBC.2012.6345886.
D. Chakraborty and M. Chattopadhyay, “Finite Element Method based Modeling of a Sensory System for Detection of Atherosclerosis in Human Using Electrical Impedance Tomography,” Procedia Technology, vol. 10, pp. 262–270, 2013. [Online]. doi: 10.1016/j.protcy.2013.12.360.
M. Proença, F. Braun, J. Solà, J.-P. Thiran, and M. Lemay, “Noninvasive pulmonary artery pres-sure monitoring by EIT: a model-based feasibility study,” Medical & Biological Engineering & Computing, vol. 55, no. 6, pp. 949–963, Jun. 2017. [Online]. doi: 10.1007/s11517-016-1570-1.
F. Fu et al., “Use of Electrical Impedance Tomography to Monitor Regional Cerebral Edema during Clinical Dehydration Treatment,” PLoS ONE, vol. 9, no. 12, p. e113202, Dec. 2014. [Online]. doi: 10.1371/journal.pone.0113202.
M. Dai et al., “In Vivo Imaging of Twist Drill Drainage for Subdural Hematoma: A Clinical Feasibility Study on Electrical Impedance Tomography for Measuring Intracranial Bleeding in Humans,” PLoS ONE, vol. 8, no. 1, p. e55020, Jan. 2013. [Online]. doi: 10.1371/journal.pone.0055020.
G. Boverman, T.-J. Kao, X. Wang, J. M. Ashe, D. M. Davenport, and B. C. Amm, “Detection of small bleeds in the brain with electrical impedance tomography,” Physiological Measurement, vol. 37, no. 6, pp. 727–750, Jun. 2016. [Online]. doi: 10.1088/0967-3334/37/6/727.
S. Suksawang, K. Niamsri, and T. Ouypornkochagorn, “Scalp Voltage Response to Conductivity Changes in,” 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), no. July, pp. 223–236, 2018.
S. R. Atefi, F. Seoane, S. Kamalian, E. S. Rosenthal, M. H. Lev, and G. Bonmassar, “Intracranial hemorrhage alters scalp potential distribution in bioimpedance cerebral monitoring: Preliminary results from FEM simulation on a realistic head model and human subjects,” Medical Physics, vol. 43, no. 2, pp. 675–686, Jan. 2016. [Online]. doi: 10.1118/1.4939256.
R. Li, J. Gao, Y. Li, J. Wu, and Z. Zhao, “Preliminary Study of Assessing Bladder Urinary Volume Using Electrical Impedance Tomography,” Journal of Medical and Biological Engineering, vol. 36, no. 1. Springer Berlin Heidelberg, pp. 71–79, 2016. [Online]. doi: 10.1007/s40846-016-0108-1.
T. Schlebusch et al., “Impedance ratio method for urine conductivity-invariant estimation of bladder volume,” Journal of Electrical Bioimpedance, vol. 5, no. 1, pp. 48–54, Sep. 2014. [Online]. doi: 10.5617/jeb.895.
T. Schlebusch and S. Leonhardt, “Effect of electrode arrangements on bladder volume esti-mation by electrical impedance tomography,” Journal of Physics: Conference Series, vol. 434, no. 1. 2013. [Online]. doi: 10.1088/1742-6596/434/1/012080.
A. Ron, S. Abboud, and M. Arad, “Home monitoring of bone density in the wrist—a parame-tric EIT computer modeling study,” Biomedical Physics & Engineering Express, vol. 2, no. 3, p. 035002, Apr. 2016. [Online]. doi: 10.1088/2057-1976/2/3/035002.
A. Nishida et al., “A new method for the estimation of age at death by using electrical impe-dance: A preliminary study,” Legal Medicine, vol. 17, no. 6, pp. 560–568, Nov. 2015. [Online]. doi: 10.1016/j.legalmed.2015.07.003.
Y. Zeng, L. Xu, Z. Cao, and S. Ma, “FPGA-based implementation of Prony demodulation in the multi-frequency EIT system,” Conference Record - IEEE Instrumentation and Measurement Technology Conference, pp. 548–552, 2011. [Online]. doi: 10.1109/IMTC.2011.5944251.
T. K. Bera and J. Nagaraju, “Studying the surface electrode switching of a sixteen electrode EIT system using a LabVIEW-based electrode switching module (LV-ESM),” in International Conference on Circuits, Communication, Control and Computing, 2014, no. November, pp. 122–127. [Online]. doi: 10.1109/CIMCA.2014.7057772.
S. Ping and H. Jiang, “Design of electrical Impedance Tomography system based on layer stripping process,” vol. 329. pp. 392–396, 2013. [Online]. doi: 10.4028/www.scientific.net/AMM.329.392.
P. O. Gaggero, A. Adler, J. Brunner, and P. Seitz, “Electrical impedance tomography system based on active electrodes,” vol. 831. 2012. [Online]. doi: 10.1088/0967-3334/33/5/831.
J. Bordes, C. Mazzeo, P. Goutorbe, K. Wade, and E. Kaiser, “Visualisation des variations du volume pulmonaire de fin d’expiration au cours d’une anesth{é}sie g{é}n{é}rale par tomogra-phie d’imp{é}dance {é}lectrique,” Annales Fran{ç}aises d’Anesth{é}sie et de R{é}animation, vol. 33, no. 3. pp. 193–195, 2014.
M. Guermandi, R. Cardu, E. Franchi, and R. Guerrieri, “Active electrode IC combining EEG, electrical impedance tomography, continuous contact impedance measurement and power supply on a single wire,” European Solid-State Circuits Conference. pp. 335–338, 2011. [Online]. doi: 10.1109/ESSCIRC.2011.6044975.
J. S. Isaac and R. Kulkarni, “Super resolution techniques for medical image processing,” in 2015 International Conference on Technologies for Sustainable Development (ICTSD), 2015, pp. 1–6. [Online]. doi: 10.1109/ICTSD.2015.7095900.
M. Khalighi, B. Vosoughi Vahdat, M. Mortazavi, and A. M. Mikaeili, “Design and Implementation of Precise Hardware for Electrical Impedance Tomography (Eit),” Transactions of Electrical Engineering, vol. 38, no. E1. pp. 1–20, 2014. [Online]. doi: 10.1007/s00101-007-1273-y.
H. Fujita et al., “Medical image processing and computer-aided detection/diagnosis (CAD),” Computerized Healthcare (ICCH), 2012 International Conference on. pp. 66–71, 2012. [Online]. doi: 10.1109/ICCH.2012.6724473.
Hun Wi, H. Sohal, A. L. McEwan, Eung Je Woo, and Tong In Oh, “Multi-Frequency Electrical Impedance Tomography System With Automatic Self-Calibration for Long-Term Monitoring,” IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 1, pp. 119–128, Feb. 2014. [Online]. doi: 10.1109/TBCAS.2013.2256785.
A. McEwan, G. Cusick, and D. S. Holder, “A review of errors in multi-frequency EIT instrumen-tation,” Physiological Measurement, vol. 28, no. 7, pp. S197–S215, Jul. 2007. [Online]. doi: 10.1088/0967-3334/28/7/S15.
O. Luppi Silva, R. Gonzalez Lima, T. Castro Martins, F. Silva de Moura, R. Seiji Tavares, and M. Sales Guerra Tsuzuki, “Influence of current injection pattern and electric potential measure-ment strategies in electrical impedance tomography,” Control Engineering Practice. Elsevier, pp. 1–11, 2016. [Online]. doi: 10.1016/j.conengprac.2016.03.003.
S. Khan, A. Borsic, P. Manwaring, A. Hartov, and R. Halter, “FPGA Based High Speed Data Acquisition System for Electrical Impedance Tomography.,” Journal of physics. Conference series, vol. 434, no. 1. p. 012081, 2013. [Online]. doi: 10.1088/1742-6596/434/1/012081.
Z. Zhang, F. Dong, and C. Xu, “Data acquisition system based on CompactPCI bus and FPGA for electrical resistance tomography,” in 2011 Chinese Control and Decision Conference (CCDC), 2011, pp. 3538–3543. [Online]. doi: 10.1109/CCDC.2011.5968731.
H. Wi, H. Sohal, A. L. McEwan, E. J. Woo, and T. I. Oh, “Multi-frequency electrical impedan-ce tomography system with automatic self-calibration for long-term monitoring,” IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 1, pp. 119–128, 2014. [Online]. doi:10.1109/TBCAS.2013.2256785.
I. Kukharenko and V. Kotovskyi, “Low power bioimpedance tracking system for stress and acti-vity monitoring,” in 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO), 2017, pp. 288–291. [Online]. doi: 10.1109/ELNANO.2017.7939764.
V. Chitturi and N. Farrukh, “A Low Cost Electrical Impedance Tomography ( EIT ) for Pulmonary Disease Modelling and Diagnosis .,” Name: The Second International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE2014), no. March 2014, pp. 83–89, 2014.
Copyright (c) 2020 Ingeniería Solidaria

This work is licensed under a Creative Commons Attribution 4.0 International License.
Cession of rights and ethical commitment
As the author of the article, I declare that is an original unpublished work exclusively created by me, that it has not been submitted for simultaneous evaluation by another publication and that there is no impediment of any kind for concession of the rights provided for in this contract.
In this sense, I am committed to await the result of the evaluation by the journal Ingeniería Solidaría before considering its submission to another medium; in case the response by that publication is positive, additionally, I am committed to respond for any action involving claims, plagiarism or any other kind of claim that could be made by third parties.
At the same time, as the author or co-author, I declare that I am completely in agreement with the conditions presented in this work and that I cede all patrimonial rights, in other words, regarding reproduction, public communication, distribution, dissemination, transformation, making it available and all forms of exploitation of the work using any medium or procedure, during the term of the legal protection of the work and in every country in the world, to the Universidad Cooperativa de Colombia Press.