Design of a solar energy harvesting system for supplying energy to an autonomous wireless sensor node
Introduction: This paper is the product of the research “Generation of a modular electronic platform for the conformation of a WSN” developed in the EAFIT University in 2019.
Problem: Wireless Sensor Networks (WSNs) are used as a technology of information and communication (TIC) to automate processes. Its implementation is considered non-efficient, because of their high cost concerning to the batteries replacement that the nodes conforming the WSN, require.
Objective: The objective of the research is to develop more efficient solar energy harvesting systems that can guarantee an average performance of the wireless sensor node at a low cost.
Methodology: Here we present the design and the implementation of a solar energy harvesting system that integrates a buck converter, a maximum power point tracking (MPPT) control, and a wireless sensor node. Besides, we do measures of voltage at the output of the buck converter and estimation of energy autonomy in the wireless sensor node.
Results: Autonomous operation with the solar energy harvesting system was rich for the node sending packages each 20 min.
Conclusion: This article presented a solar energy harvesting system with the implementation of an MPPT control.
Originality: Through this research, parameters of the MPPT control are formulated for the first time for the solar energy harvesting system design, based on the duty cycle limits.
Limitations: The availability of the devices used in the implementation of the proposed design.
I. Froiz-Míguez, T. M. Fernández-Caramés, P. Fraga-Lamas y L. Castedo, “Design, implementation and practical evaluation of an IoT home automation system for fog computing applications based on MQTT and ZigBee-WiFi sensor nodes,” Sensors, vol. 18, no 8, p. 2660, 2018, doi:10.3390/s18082660
S. A. Kumar y P. Ilango, “The impact of wireless sensor network in the field of precision agri-culture: A review,” Wireless Personal Communications, vol. 98, no 1, pp. 685-698, 2018, doi: https://doi.org /10.1007/s11277-017-4890-z
J. Aponte-Luis, J. A. Gómez-Galán y Gómez-Bravo, “An efficient wireless sensor network for industrial monitoring and control,” Sensors, vol. 18, no 1, p. 182, 2018, doi:10.3390/s18010182
M. T. Penella, J. Albesa y M. Gasulla, “Powering wireless sensor nodes: Primary batteries versus energy harvesting,” In 2009 IEEE Instrumentation and Measurement Technology Conference, Singapore, pp. 1625-1630, 2009, doi:10.1186/1471-2288-12-114
Crossbow Technology, Inc., “NR2 - Núcleo de Redes Sem Fio e Redes Acvanzadas,” [Online]. Available: http://www.nr2.ufpr.br/~adc/documentos/iris_datasheet.pdf.
Crossbow Technology, Inc., “Autexopen,” [Online]. Available: http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf.
M. Prauzek, J. Konecny, M. Borova y K. Janosova, “Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review,” Sensors, vol. 18, no 8, p. 2446, 2018, doi: https://doi.org /10.3390/s18082446
R. Faraji, H. Farzanehfard y E. Adib, “Efficiency improvement of integrated synchronous buck converter using body biasing for ultra-low-voltage applications,” Microelectronics Journal, vol. 63, pp. 94-103, 2017, doi: https://doi.org /10.1016/j.mejo.2017.03.007
K. S. Adu-Manu, N. Adam, C. Tapparello, H. Ayatollahi y W. Heinzelman, “Energy-Harvesting Wireless Sensor Networks (EH-WSNs) A Review,” ACM Transactions on Sensor Networks (TOSN), vol. 14, no 2, pp. 1-50, 2018, doi: https://doi.org /10.1145/3183338
P. Zhang, C. M. Sadler, S. A. Lyon y M. Martonosi, “Hardware design experiences in ZebraNet,” In Proceedings of the 2nd international conference on Embedded networked sensor systems, pp. 227-238, 2004. [Online]. Available: http://www.princeton.edu/~mrm/sensys04
C. H. Wang, Y. K. Huang, X. Y. Zheng, T. S. Lin, C. L. Chuang y J. A. Jiang, “A self sustainable air quality monitoring system using WSN,” In 2012 Fifth IEEE International Conference on Service-Oriented Computing and Applications (SOCA), pp. 1-6, 2012, doi: 10.1109/SOCA.2012.6449427
J. B. Urbano, F. H. T. González y P. E. Perilla, “Estudio para el uso de la tecnología solar foto-voltaica,” Ingeniería solidaria, vol. 6, no 10-11, pp. 69-81, 2010. [Online]. Available: https://revistas.ucc.edu.co/index.php/in/article/view/453
C. A. R. Algarín, “Sistemas híbridos: una estrategia para mejorar la eficiencia en los paneles solares,” Ingeniería solidaria, vol. 7, no 13, pp. 62-67, 2011. [Online]. Available: https://revistas.ucc.edu.co/index.php/in/article/view/357
C. S. Abella, S. Bonina, A. Cucuccio, S. D’Angelo, G. Giustolisi , A. D. Grasso y S. Pennisi, “Autonomous energy-efficient wireless sensor network platform for home/office automation,” IEEE Sensors Journal, vol. 19, no 9, pp. 3501-3512, 2019, doi: 10.1109/JSEN.2019.2892604
H. Sharma, A. Haque y Z. A. Jaffery, “Modeling and optimisation of a solar energy harvesting system for wireless sensor network nodes,” Journal of Sensor and Actuator Networks, vol. 7, no 3, p. 40, 2018, doi: https://doi.org /10.3390/jsan7030040
M. T. Penella-López y M. Gasulla-Forner, Powering autonomous sensors: an integral approach with focus on solar and RF energy harvesting, Springer Science & Business Media, 2011, doi: 10.1007/978-94-007-1573-8
S. J. Chiang, H.-J. Shieh y M.-C. Chen, “Modeling and Control of PV Charger System with SEPIC Converter,” IEEE Transactions on Industrial Electronics, vol. 56, no 11, pp. 4344 - 4353, 2008, doi: 10.1109/TIE.2008.2005144
J. U. Castellanos, “Experimentación del hardware de control para un seguidor solar,” Ingeniería solidaria, vol. 7, no 13, pp. 53-60, 2011. [Online]. Available: https://revistas.ucc.edu.co/index.php/in/article/view/356
I. Froiz-Míguez, T. M. Fernández-Caramés, P. Fraga-Lamas y L. Castedo, “Design, implemen-tation and practical evaluation of an IoT home automation system for fog computing appli-cations based on MQTT and ZigBee-WiFi sensor nodes,” Sensors, vol. 18, no 8, p. 2660, 2018, doi:10.3390/s18082660
A. Frezzetti, S. Manfredi y M. Pagano, “A design approach of the solar harvesting control sys-tem for wireless sensor node,” Control Engineering Practice, vol. 44, pp. 45-54, 2015, doi: ht-tps://doi.org /10.1016/j.conengprac.2015.07.004
García-Lesta, D. Cabello, E. Ferro, P. López y V. M. Brea, “Wireless sensor network with perpe-tual motes for terrestrial snail activity monitoring,” IEEE Sensor Journal, vol. 17, no 15, pp. 5008-5015, 2011, doi:10.1109/JSEN.2017.2718107
R. G. Vieira, A. M. Da Cunha, L. B. Ruiz y A. P. De Camargo, “On the design of a long range WSN for Precision Irrigation,” IEEE Sensors Journal, vol. 18, no 2, pp. 773-780, 2017, doi :10.1109/JSEN.2017.2776859
F. Karray, M. W. Jmal, A. Garcia-Ortiz, M. Abid y A. M. Obeid, “A comprehensive survey on wi-reless sensor node hardware platforms,” Computer Networks, vol. 144, pp. 89-110, 2018, doi: https://doi.org /10.1016/j.comnet.2018.05.010
C. Park y P. H. Chou, “Ambimax: Autonomous energy harvesting platform for multi-supply wireless sensor nodes,” In 2006 3rd annual IEEE communications society on sensor and ad hoc communications and networks, pp. 168-177, 2006, doi: 10.1109/SAHCN.2006.288421
H. Shao, X. Li, C. . Y. Tsui y W. H. Ki, “A novel single-inductor dual-input dual-output DC–DC converter with PWM control for solar energy harvesting system,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no 8, pp. 1693-1704, 2013, doi: 10.1109/TVLSI.2013.2278785
A. Rinaldi, A. I. Natalisanto, S. Muliyono y S. Said, “Implementation of Wireless Sensor Network (WSN) to calculate air pollution index of Samarinda City,” Journal of Physics: Conference Series, 2019, doi:10.1088/1742-6596/1277/1/012030
A. Frezzetti, S. Manfredi y M. Pagano, “A design approach of the solar harvesting control sys-tem for wireless sensor node,” Control Engineering Practice, vol. 44, pp. 45-54, 2015, https://doi.org /10.1016/j.conengprac.2015.07.004
R. Youcef y M. Fatima, “A detailed modeling of photovoltaic module using MATLAB,” NRIAG Journal of Astronomy and Geophysics, vol. 3, no 1, pp. 53-61, 2014, doi:10.1016/j.nrjag.2014.04.001
L. R. Reis, J. R. Camacho y D. F. Novacki, “The Newton Raphson method in the extraction of parameters of PV modules,” In Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ’17), Malaga, pp. 4-6, 2017. [Online]. Available: https://pdfs.semanticscholar.org/f28e/c097d66471e9f4f42e9f9b9698cd55eb7587.pdf
M. R. Hamid, J. Rahimi, S. Chowdhury y T. M. Sunny, “Design and Development of a Maximum Power Point Tracking (MPPT) charge controller for Photo-Voltaic (PV) power generation sys-tem,” American Journal of Engineering Research, vol. 5, no 5, pp. 15-22, 2016. [Online]. Available: https://www.researchgate.net/publication/318654136_Design_and_Development_of_a_Maximum_Power_Point_Tracking_MPPT_charge_controller_for_Photo-Voltaic_PV_power_generation_system
M. H. Rashid, Power electronics handbook, Butterworth-Heinemann, 2017.
Z. Gao, C. S. Chin, W. L. Woo y J. Jia, “Integrated equivalent circuit and thermal model for simulation of temperature-dependent LiFePO4 battery in actual embedded application,” Energies, vol. 10, no 1, p. 85, 2017, doi: https://doi.org /10.3390/en10010085
N. Kularatna, Energy storage devices for electronic systems: rechargeable batteries and su-percapacitors, Academic Press., 2014, doi: https://doi.org /10.1016/C2012-0-06356-9
Texas Instruments, “Texas Instruments,” 2011. [Online]. Available: https://www.ti.com/lit/an/snva533/snva533.pdf?ts=1596740038459&ref_url=https%253A%252F%252Fwww.google.com%252F
Texas Instruments, “Texas Instruments,” June 2015. [Online]. Available: https://www.ti.com/lit/ug /tiduaa0/tiduaa0.pdf?ts=1598576613382&ref_url=https%253A%252F%252Fwww.ti.com%252Ftool%252FTIDA-00588.
Texas Instruments, “Texas Instruments,” August 2014. [Online]. Available: https://www.ti.com/lit/ug/sluuaa8a/sluuaa8a.pdf?ts=1598576565261&ref_url=https%253A%252F%252Fwww.google.com%252F.
K. Yao, Y. Qiu, M. Xu y F. C. Lee, “A novel winding-coupled buck converter for high-frequency, high-step-down DC-DC conversion,” IEEE Transactions on Power Electronics, vol. 20, no 5, pp. 1017-1024, 2005, doi: 10.1109/TPEL.2005.854022
S. Sharifi, M. Monfared, M. Babaei y A. Pourfaraj, “Highly Efficient Single-Phase Buck–Boost Variable-Frequency AC–AC Converter With Inherent Commutation Capability,” IEEE Transactions on Industrial Electronics, vol. 67, no 5, pp. 3640-3649, 2019, doi: 10.1109/TIE.2019.2914644
Copyright (c) 2021 Ingeniería Solidaria

This work is licensed under a Creative Commons Attribution 4.0 International License.
Cession of rights and ethical commitment
As the author of the article, I declare that is an original unpublished work exclusively created by me, that it has not been submitted for simultaneous evaluation by another publication and that there is no impediment of any kind for concession of the rights provided for in this contract.
In this sense, I am committed to await the result of the evaluation by the journal Ingeniería Solidaría before considering its submission to another medium; in case the response by that publication is positive, additionally, I am committed to respond for any action involving claims, plagiarism or any other kind of claim that could be made by third parties.
At the same time, as the author or co-author, I declare that I am completely in agreement with the conditions presented in this work and that I cede all patrimonial rights, in other words, regarding reproduction, public communication, distribution, dissemination, transformation, making it available and all forms of exploitation of the work using any medium or procedure, during the term of the legal protection of the work and in every country in the world, to the Universidad Cooperativa de Colombia Press.