• Research Articles

    Design of a solar energy harvesting system for supplying energy to an autonomous wireless sensor node

    Vol. 17 No. 2 (2021)
    Published: 2021-05-05
    Mónica María Salazar Cardona
    Universidad EAFIT
    Alejandro Marulanda Tobón
    Universidad EAFIT

    Introduction: This paper is the product of the research “Generation of a modular electronic platform for the conformation of a WSN” developed in the EAFIT University in 2019.

    Problem: Wireless Sensor Networks (WSNs) are used as a technology of information and communication (TIC) to automate processes. Its implementation is considered non-efficient, because of their high cost concerning to the batteries replacement that the nodes conforming the WSN, require.

    Objective: The objective of the research is to develop more efficient solar energy harvesting systems that can guarantee an average performance of the wireless sensor node at a low cost.

    Methodology: Here we present the design and the implementation of a solar energy harvesting system that integrates a buck converter, a maximum power point tracking (MPPT) control, and a wireless sensor node. Besides, we do measures of voltage at the output of the buck converter and estimation of energy autonomy in the wireless sensor node.

    Results: Autonomous operation with the solar energy harvesting system was rich for the node sending packages each 20 min.

    Conclusion: This article presented a solar energy harvesting system with the implementation of an MPPT control.

    Originality: Through this research, parameters of the MPPT control are formulated for the first time for the solar energy harvesting system design, based on the duty cycle limits.

    Limitations: The availability of the devices used in the implementation of the proposed design.

    Keywords: solar panel, energy harvesting system, energy autonomy, wireless sensor nodes

    How to Cite

    [1]
    M. M. Salazar Cardona and A. Marulanda Tobón, “Design of a solar energy harvesting system for supplying energy to an autonomous wireless sensor node”, ing. Solidar, vol. 17, no. 2, pp. 1–18, May 2021, doi: 10.16925/2357-6014.2021.02.02.

    I. Froiz-Míguez, T. M. Fernández-Caramés, P. Fraga-Lamas y L. Castedo, “Design, implementation and practical evaluation of an IoT home automation system for fog computing applications based on MQTT and ZigBee-WiFi sensor nodes,” Sensors, vol. 18, no 8, p. 2660, 2018, doi:10.3390/s18082660

    S. A. Kumar y P. Ilango, “The impact of wireless sensor network in the field of precision agri-culture: A review,” Wireless Personal Communications, vol. 98, no 1, pp. 685-698, 2018, doi: https://doi.org /10.1007/s11277-017-4890-z

    J. Aponte-Luis, J. A. Gómez-Galán y Gómez-Bravo, “An efficient wireless sensor network for industrial monitoring and control,” Sensors, vol. 18, no 1, p. 182, 2018, doi:10.3390/s18010182

    M. T. Penella, J. Albesa y M. Gasulla, “Powering wireless sensor nodes: Primary batteries versus energy harvesting,” In 2009 IEEE Instrumentation and Measurement Technology Conference, Singapore, pp. 1625-1630, 2009, doi:10.1186/1471-2288-12-114

    Crossbow Technology, Inc., “NR2 - Núcleo de Redes Sem Fio e Redes Acvanzadas,” [Online]. Available: http://www.nr2.ufpr.br/~adc/documentos/iris_datasheet.pdf.

    Crossbow Technology, Inc., “Autexopen,” [Online]. Available: http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf.

    M. Prauzek, J. Konecny, M. Borova y K. Janosova, “Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review,” Sensors, vol. 18, no 8, p. 2446, 2018, doi: https://doi.org /10.3390/s18082446

    R. Faraji, H. Farzanehfard y E. Adib, “Efficiency improvement of integrated synchronous buck converter using body biasing for ultra-low-voltage applications,” Microelectronics Journal, vol. 63, pp. 94-103, 2017, doi: https://doi.org /10.1016/j.mejo.2017.03.007

    K. S. Adu-Manu, N. Adam, C. Tapparello, H. Ayatollahi y W. Heinzelman, “Energy-Harvesting Wireless Sensor Networks (EH-WSNs) A Review,” ACM Transactions on Sensor Networks (TOSN), vol. 14, no 2, pp. 1-50, 2018, doi: https://doi.org /10.1145/3183338

    P. Zhang, C. M. Sadler, S. A. Lyon y M. Martonosi, “Hardware design experiences in ZebraNet,” In Proceedings of the 2nd international conference on Embedded networked sensor systems, pp. 227-238, 2004. [Online]. Available: http://www.princeton.edu/~mrm/sensys04

    C. H. Wang, Y. K. Huang, X. Y. Zheng, T. S. Lin, C. L. Chuang y J. A. Jiang, “A self sustainable air quality monitoring system using WSN,” In 2012 Fifth IEEE International Conference on Service-Oriented Computing and Applications (SOCA), pp. 1-6, 2012, doi: 10.1109/SOCA.2012.6449427

    J. B. Urbano, F. H. T. González y P. E. Perilla, “Estudio para el uso de la tecnología solar foto-voltaica,” Ingeniería solidaria, vol. 6, no 10-11, pp. 69-81, 2010. [Online]. Available: https://revistas.ucc.edu.co/index.php/in/article/view/453

    C. A. R. Algarín, “Sistemas híbridos: una estrategia para mejorar la eficiencia en los paneles solares,” Ingeniería solidaria, vol. 7, no 13, pp. 62-67, 2011. [Online]. Available: https://revistas.ucc.edu.co/index.php/in/article/view/357

    C. S. Abella, S. Bonina, A. Cucuccio, S. D’Angelo, G. Giustolisi , A. D. Grasso y S. Pennisi, “Autonomous energy-efficient wireless sensor network platform for home/office automation,” IEEE Sensors Journal, vol. 19, no 9, pp. 3501-3512, 2019, doi: 10.1109/JSEN.2019.2892604

    H. Sharma, A. Haque y Z. A. Jaffery, “Modeling and optimisation of a solar energy harvesting system for wireless sensor network nodes,” Journal of Sensor and Actuator Networks, vol. 7, no 3, p. 40, 2018, doi: https://doi.org /10.3390/jsan7030040

    M. T. Penella-López y M. Gasulla-Forner, Powering autonomous sensors: an integral approach with focus on solar and RF energy harvesting, Springer Science & Business Media, 2011, doi: 10.1007/978-94-007-1573-8

    S. J. Chiang, H.-J. Shieh y M.-C. Chen, “Modeling and Control of PV Charger System with SEPIC Converter,” IEEE Transactions on Industrial Electronics, vol. 56, no 11, pp. 4344 - 4353, 2008, doi: 10.1109/TIE.2008.2005144

    J. U. Castellanos, “Experimentación del hardware de control para un seguidor solar,” Ingeniería solidaria, vol. 7, no 13, pp. 53-60, 2011. [Online]. Available: https://revistas.ucc.edu.co/index.php/in/article/view/356

    I. Froiz-Míguez, T. M. Fernández-Caramés, P. Fraga-Lamas y L. Castedo, “Design, implemen-tation and practical evaluation of an IoT home automation system for fog computing appli-cations based on MQTT and ZigBee-WiFi sensor nodes,” Sensors, vol. 18, no 8, p. 2660, 2018, doi:10.3390/s18082660

    A. Frezzetti, S. Manfredi y M. Pagano, “A design approach of the solar harvesting control sys-tem for wireless sensor node,” Control Engineering Practice, vol. 44, pp. 45-54, 2015, doi: ht-tps://doi.org /10.1016/j.conengprac.2015.07.004

    García-Lesta, D. Cabello, E. Ferro, P. López y V. M. Brea, “Wireless sensor network with perpe-tual motes for terrestrial snail activity monitoring,” IEEE Sensor Journal, vol. 17, no 15, pp. 5008-5015, 2011, doi:10.1109/JSEN.2017.2718107

    R. G. Vieira, A. M. Da Cunha, L. B. Ruiz y A. P. De Camargo, “On the design of a long range WSN for Precision Irrigation,” IEEE Sensors Journal, vol. 18, no 2, pp. 773-780, 2017, doi :10.1109/JSEN.2017.2776859

    F. Karray, M. W. Jmal, A. Garcia-Ortiz, M. Abid y A. M. Obeid, “A comprehensive survey on wi-reless sensor node hardware platforms,” Computer Networks, vol. 144, pp. 89-110, 2018, doi: https://doi.org /10.1016/j.comnet.2018.05.010

    C. Park y P. H. Chou, “Ambimax: Autonomous energy harvesting platform for multi-supply wireless sensor nodes,” In 2006 3rd annual IEEE communications society on sensor and ad hoc communications and networks, pp. 168-177, 2006, doi: 10.1109/SAHCN.2006.288421

    H. Shao, X. Li, C. . Y. Tsui y W. H. Ki, “A novel single-inductor dual-input dual-output DC–DC converter with PWM control for solar energy harvesting system,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no 8, pp. 1693-1704, 2013, doi: 10.1109/TVLSI.2013.2278785

    A. Rinaldi, A. I. Natalisanto, S. Muliyono y S. Said, “Implementation of Wireless Sensor Network (WSN) to calculate air pollution index of Samarinda City,” Journal of Physics: Conference Series, 2019, doi:10.1088/1742-6596/1277/1/012030

    A. Frezzetti, S. Manfredi y M. Pagano, “A design approach of the solar harvesting control sys-tem for wireless sensor node,” Control Engineering Practice, vol. 44, pp. 45-54, 2015, https://doi.org /10.1016/j.conengprac.2015.07.004

    R. Youcef y M. Fatima, “A detailed modeling of photovoltaic module using MATLAB,” NRIAG Journal of Astronomy and Geophysics, vol. 3, no 1, pp. 53-61, 2014, doi:10.1016/j.nrjag.2014.04.001

    L. R. Reis, J. R. Camacho y D. F. Novacki, “The Newton Raphson method in the extraction of parameters of PV modules,” In Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ’17), Malaga, pp. 4-6, 2017. [Online]. Available: https://pdfs.semanticscholar.org/f28e/c097d66471e9f4f42e9f9b9698cd55eb7587.pdf

    M. R. Hamid, J. Rahimi, S. Chowdhury y T. M. Sunny, “Design and Development of a Maximum Power Point Tracking (MPPT) charge controller for Photo-Voltaic (PV) power generation sys-tem,” American Journal of Engineering Research, vol. 5, no 5, pp. 15-22, 2016. [Online]. Available: https://www.researchgate.net/publication/318654136_Design_and_Development_of_a_Maximum_Power_Point_Tracking_MPPT_charge_controller_for_Photo-Voltaic_PV_power_generation_system

    M. H. Rashid, Power electronics handbook, Butterworth-Heinemann, 2017.

    Z. Gao, C. S. Chin, W. L. Woo y J. Jia, “Integrated equivalent circuit and thermal model for simulation of temperature-dependent LiFePO4 battery in actual embedded application,” Energies, vol. 10, no 1, p. 85, 2017, doi: https://doi.org /10.3390/en10010085

    N. Kularatna, Energy storage devices for electronic systems: rechargeable batteries and su-percapacitors, Academic Press., 2014, doi: https://doi.org /10.1016/C2012-0-06356-9

    Texas Instruments, “Texas Instruments,” 2011. [Online]. Available: https://www.ti.com/lit/an/snva533/snva533.pdf?ts=1596740038459&ref_url=https%253A%252F%252Fwww.google.com%252F

    Texas Instruments, “Texas Instruments,” June 2015. [Online]. Available: https://www.ti.com/lit/ug /tiduaa0/tiduaa0.pdf?ts=1598576613382&ref_url=https%253A%252F%252Fwww.ti.com%252Ftool%252FTIDA-00588.

    Texas Instruments, “Texas Instruments,” August 2014. [Online]. Available: https://www.ti.com/lit/ug/sluuaa8a/sluuaa8a.pdf?ts=1598576565261&ref_url=https%253A%252F%252Fwww.google.com%252F.

    K. Yao, Y. Qiu, M. Xu y F. C. Lee, “A novel winding-coupled buck converter for high-frequency, high-step-down DC-DC conversion,” IEEE Transactions on Power Electronics, vol. 20, no 5, pp. 1017-1024, 2005, doi: 10.1109/TPEL.2005.854022

    S. Sharifi, M. Monfared, M. Babaei y A. Pourfaraj, “Highly Efficient Single-Phase Buck–Boost Variable-Frequency AC–AC Converter With Inherent Commutation Capability,” IEEE Transactions on Industrial Electronics, vol. 67, no 5, pp. 3640-3649, 2019, doi: 10.1109/TIE.2019.2914644

    MÉTRICAS
    ARTICLE VIEWS: 526
    PDF VIEWS: 417
    Metrics
    Metrics Loading ...
    https://plu.mx/plum/a/?doi=10.16925/2357-6014.2021.02.02