Evaluation of electrocoagulation by Fenton reagent for the removal of turbidity and sulfides in wastewater from the process of depilation or liming in the tanneries

Main Article Content

Oscar Enrique Robayo Triana
Diego Alberto Sánchez Pérez
Rafael Nikolay Agudelo Valencia

Article Details

Research Articles


Introduction: This article is the result of the research "Evaluation of the intensified electrocoagulation in wastewater of the liming process in The Scorpion tannery in the municipality of Villapinzón-Cundinamarca with analysis at the Universidad Libre de Colombia-Sede Bosque Popular between 2018 and 2019.

Objective: To evaluate the Electro-Fenton strategy as an alternative for the treatment of wastewater from the skin tanning process.

Methodology: An experimental design of factorial type 33 is used in two phases, utilizing a Batch type reactor, in the first phase the number of iron electrodes, H2O2 dosage and current intensity supplied is analyzed. For the second phase, the reaction time is varied, with a number of plates defined the parameters of sulfide concentration, total organic carbon (TOC) and both initial and final turbidity for a subsequent analysis of variance (ANOVA) were analyzed.

Conclusion: In the first stage of treatment for a reaction time of 60 minutes a turbidity removal of 96.2%, 65.4% sulfide and 52.3% of TOC was obtained, with these it was determined that with 4 electrodes the greatest removal was obtained. In the second stage with follow-up treatment in function of time, a removal of 99.2% for turbidity, 68.35% for sulfur and 53.5% for TOC was obtained.

Originality: An electrochemical system is used to treat wastewater from the tannery industry, based on previous research, in order to adapt the technology to the sector mentioned initially.

Limitations: The study is limited to the use of iron electrodes, current densities and doses of H2O2 used, in this type of systems aluminum electrodes, stainless steel, graphite and doped materials can be used to maximize the reaction in the electrodes, as well as the use of ozone as an oxidizing agent.

[1] S. Y. Martinez Buitrago and J. A. Romero Coca, “Revisión del estado actual de la industria de las curtiembres en sus procesos y productos: un análisis de su competitividad,” Rev. Fac. Ciencias Económicas, vol. 26, no. 1, pp. 119-120, 2017. [Online]. doi: https://doi.org/10.18359/rfce.2357

[2] D. Saranya and S. Shanthakumar, “Green microalgae for combined sewage and tannery effluent treatment: Performance and lipid accumulation potential,” J. Environ. Manage., vol. 241, no. April, pp. 1-2, 2019. [Online]. doi: https://doi.org/10.1016/j.jenvman.2019.04.031

[3] R. V. Numpaque P. and S. E. Viteri R., “Biotransformación del pelo residual de curtiembres,” Rev. Ciencias Agrícolas, vol. 33, no. 2, pp. 96-97, 2016. [Online]. doi: https://doi.org/10.22267/rcia.163302.56.

[4] G. Durai and M. Rajasimman, “Biological treatment of tannery wastewater - A review,” Journal of Environmental Science and Technology. 2011. pp. 1-2. [Online]. doi: https://doi.org/10.3923/jest.2011.1.17

[5] E. E. Gerek, S. Yılmaz, A. S. Koparal, and N. Gerek, “Combined energy and removal efficiency of electrochemical wastewater treatment for leather industry,” J. Water Process Eng., vol. 30, 2019. [Online]. doi: https://doi.org/10.1016/j.jwpe.2017.03.007

[6] M. F. Umbarila-Ortega, J. S. Prado-Rodríguez, and R. N. Agudelo-Valencia, “Remoción de sulfuro empleando ozono como agente oxidante en aguas residuales de curtiembres,” Rev. Fac. Ing., 2019. [Online]. doi:https://doi.org/10.19053/01211129.v28.n51.2019.9081

[7] A. Portada Mamani, Tratamiento de las aguas residuales del proceso de curtido en pieles por procesos fisico-quimico de la curtiembre de la facultad de Ingenieria Quimica de la UNA Puno, Tesis, 2016.

[8] M. A. Hashem, M. S. Nur-A-Tomal, and S. A. Bushra, “Oxidation-coagulation-filtration processes for the reduction of sulfide from the hair burning liming wastewater in tannery,” J. Clean. Prod., vol. 127, pp. 1-2. 2016. [Online]. doi : https://doi.org/10.1016/j.jclepro.2016.03.159

[9] H. W. Lin et al., “Electrochemical oxidation of iron and alkalinity generation for efficient sulfide control in sewers,” Water Res., vol. 118. [Online]. doi: https://doi.org/10.1016/j.watres.2017.02.069}

[10] S. U. Khan, D. T. Islam, I. H. Farooqi, S. Ayub, and F. Basheer, “Hexavalent chromium removal in an electrocoagulation column reactor : Process optimization using CCD , adsorption kinetics and pH modulated sludge formation,” Process Saf. Environ. Prot., vol. 122, pp. 118–119, 2019. [Online]. doi: https://doi.org/10.1016/j.psep.2018.11.024

[11] K. P. Papadopoulos et al., “Treatment of printing ink wastewater using electrocoagulation,” J. Environ. Manage., vol. 237, no. November, 2019. [Online]. doi: https://doi.org/10.1021/ie202809w

[12] E. Sociedad Química de México., Revista de la Sociedad Química de México., vol. 58, no. 3. Sociedad Química de México, pp 4-6, 2014. [Online]. doi: https://www.redalyc.org/articulo.oa?id=47532759001

[13] A. Cruz-Rizo, S. Gutiérrez-Granados, R. Salazar, and J. M. Peralta-Hernández, “Application of electro-Fenton/BDD process for treating tannery wastewaters with industrial dyes,” Sep. Purif. Technol., vol. 172, 2017. [Online]. doi:https://doi.org/10.1016/j.seppur.2016.08.029

[14] G. Lofrano, S. Meriç, G. E. Zengin, and D. Orhon, “Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review,” Sci. Total Environ., vol. 461–462, 2013. [Online]. doi: https://doi.org/10.1016/j.seppur.2016.08.029

[15] A. Mannucci, G. Munz, G. Mori, and C. Lubello, “Anaerobic treatment of vegetable tannery wastewaters: A review,” Desalination, vol. 264, no. 1–2, 2010. [Online]. doi: https://doi.org/10.1016/j.desal.2010.07.021

[16] M. H. Castaño, R. Molina, and S. Moreno, “Cooperative effect of the Co-mn Mixed oxides for the catalytic oxidation of VOCs: Influence of the synthesis method,” Appl. Catal. A Gen., 2015 pp. 48-49. [Online]. doi: https://dx.doi.org/10.1016/j.apcata.2014.12.009

[17] Y. Deng and R. Zhao, “Advanced Oxidation Processes (AOPs) in Wastewater Treatment,” Current Pollution Reports. 2015. [Online]. doi: https://dx.doi.org/10.1007/s40726-015-0015-z

[18] T. P. Sauer, L. Casaril, A. L. B. Oberziner, H. J. José, and R. de F. P. M. Moreira, “Advanced oxidation processes applied to tannery wastewater containing Direct Black 38-Elimination and degradation kinetics,” J. Hazard. Mater., vol. 135, no. 1–3, pp. 274–275, 2006. [Online]. doi: https://dx.doi.org/10.1016/j.jhazmat.2005.11.063

[19] I. Oller, S. Malato, and J. A. Sánchez-pérez, “Science of the Total Environment Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination — A review,” Sci. Total Environ., vol. 409, no. 20, 2011. [Online]. doi: https://dx.doi.org/10.1016/j.scitotenv.2010.08.061

[20] A. Blanco Llorca, “Procesos Electroquímicos De Oxidación Avanzada Aplicados a La Recuperación De Aguas Contaminadas Con El Colorante Azoico Direct Yellow - 4.,” Análisis Interdisciplinario Y Gestión Sostenible, 2012. pp 2-3. [Online]. doi: http://diposit.ub.edu/dspace/handle/2445/32177

[21] E. Isarain-Chávez, C. De La Rosa, L. A. Godínez, E. Brillas, and J. M. Peralta-Hernández, “Comparative study of electrochemical water treatment processes for a tannery wastewater effluent,” J. Electroanal. Chem., vol. 713, 2014. [Online]. doi: https://dx.doi.org/10.1016/j.jelechem.2013.11.016

[22] I. A. Şengil, S. Kulaç, and M. Özacar, “Treatment of tannery liming drum wastewater by electrocoagulation,” J. Hazard. Mater., vol. 167, no. 1–3, 2009.
[Online]. doi: https://dx.doi.org/10.1016/j.jhazmat.2009.01.099

[23] J. wei FENG, Y. bing SUN, Z. ZHENG, J. biao ZHANG, S. LI, and Y. chun TIAN, “Treatment of tannery wastewater by electrocoagulation,” J. Environ. Sci., vol. 19, no. 12, 2007.
[Online]. doi: https://dx.doi.org/10.1016/S1001-0742(07)60230-7

[24] A. Benhadji, M. Taleb Ahmed, and R. Maachi, “Electrocoagulation and effect of cathode materials on the removal of pollutants from tannery wastewater of Rouïba,” Desalination, vol. 277, no. 1–3, 2011. [Online]. doi: https://dx.doi.org/10.1016/j.desal.2011.04.014

[25] APHA/AWWA/WEF, Standard Methods for the Examination of Water and Wastewater, 23rd ed., American Public Health Association, Washingto, DC, USA: Am. Public Heal. Assoc. Washingto, DC, USA, 2017. [Online]. doi: https://dx.doi.org/ISBN%209780875532356