Low-cost microwave reactor for green synthesis of nanomaterials

Main Article Content

Leydy Tatiana Figueroa Ariza
Marcela Duarte Espinosa
Beynor Antonio Páez Sierra

Article Details

Leydy Tatiana Figueroa Ariza, Universidad Militar Nueva Granada

Faculty of Engineering. NanoFab

Marcela Duarte Espinosa, Universidad Militar Nueva Granada

Physics Department. NanoFab

Beynor Antonio Páez Sierra, Universidad Militar Nueva Granada

Physics Department. NanoFab

Section
Research Articles

Abstract

Introduction: This contribution is about a low-cost microwave reactor for green synthesis of nanomaterials. The paper reflects research results achieved at the NanoFab group of the Universidad Militar Nueva Granada, within the line of nanophotonics, sensors and nanotechnology. Investigations and analyses were carried out during 2019.


Problem: Conventional synthesis processes usually affect the environment and human health, due to contaminant reagents and generation of by-products.


Objective: The aim of this research is the modification of a microwave oven that assists in the green synthesis of nanomaterials with potential applications in homeland security.


Methodology: In this investigation, the modification of a domestic microwave was carried out. The implemented reactor features a heat exchange unit to reduce volatile elements, and a digital magnetic stirrer for local homogenization. Synthesis begins with a trisodium-citrate solution, continuously stirred at 37 °C. Next, the precursor is mixed with silver-nitrate for 2 minutes. Then, the mixture was treated for 20 minutes in the microwave reactor. Finally, the nanoparticles are recovered.


Results: The homemade microwave reactor is suitable for producing nanoparticles. Particularly, the 20-minute microwave exposure time for the reactants results in a nanoparticle size between 80-90 nm. To probe reaction parameters, impedance spectroscopy analysis is performed. Results revealed that the resistance of the medium of silver nanoparticles is 2.5 ohms, while for sodium citrate and nitrate it is 8.8 and 11.8 ohms, respectively.


Conclusion: It is demonstrated that the modified microwave reactor is suitable for nanomaterial production. Lower amounts of solvent are required during nanoparticle synthesis. Microwave synthesis allows for green nanomaterials production with a minor impact on the environment.


Limitation: Homogeneous heating of reactants in a stationary microwave cavity is limited to waveguide design; in this case, to a multimodal-microwave waveguide.


Originality: Low-cost reactor for nanomaterial production and greener synthesis.

[1] J. Prado-Gonjal y E. Morán, "Síntesis asistida por microondas de sólidos inorgánicos," An. Química, vol. 107, no. 2, pp. 129-136, 2011. [Online]. Available: https://dialnet.unirioja.es/descarga/articulo/3674454.pdf

[2] M. R. Carballido Reboredo, "Síntesis asistida por microondas de compuestos de interés biológico e industrial: haloarenos, fulverenos, tricloropirrolidonas, azoles y flavonoides. Modelado de espectros de absorción electrónica de flavonoides," Universidade de Santiago de Compostela, 2007. [Online]. Available: https://dialnet.unirioja.es/servlet/tesis?codigo=108752

[3] B. L. Hayes, Microwave synthesis, Chemistry at the speed of light, Ilustrada. United Stade: CEM publishing, 2002. [Online]. Available: http://faculty.swosu.edu/tim.hubin/share/Microwave%20Synthesis.pdf

[4] S. Ravichandran y E. Karthikeyan, "Microwave Synthesis - A Potential Tool for Green Chemistry," Int. J. ChemTech Res., vol. 3, no. June, 2014. [Online]. Available: https://www.researchgate.net/publication/326667897_Microwave_Synthesis-A_Potential_Tool_for_Green_Chemistry

[5] K. K. Rana y S. Rana, "Microwave Reactors: A Brief Review on Its Fundamental Aspects and Applications," OALib, vol. 1, no. 06, 2014. [Online]. doi: https:doi//10.4236/oalib.1100686

[6] J. M. Miranda Pantoja, J. L. Sebastián, M. Sierra, y J. Margineda, Ingeniería de microondas : técnicas experimentales. Madrid: Prentice Hall, 2002. pp. 221-228.

[7] H. Wang et al., "Rapid decomplexation of Ni-EDTA by microwave-assisted Fenton reaction", Chem. Eng. J., vol. 381, no. August 2019, p. 122703, 2020.[Online]. doi: https://doi.org/10.1016/j.cej.2019.122703

[8] D. Bogdald y A. Prociak, Microwave-Enhanced Polymer Chemistry and Technology. Oxford, UK: Blackwell Publishing Ltd, 2007. [Online]. doi: http://doi.wiley.com/10.1002/9780470390276

[9] R. R. Mishra y A. K. Sharma, "Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing", Compos. Part A Appl. Sci. Manuf., vol. 81, 2016. [Online]. doi: http://dx.doi.org/10.1016/j.compositesa.2015.10.035

[10] K. G. Ayappa, H. T. Davis, E. A. Davis, y J. Gordon, "Analysis of microwave heating of materials with temperature-dependent properties," AIChE J., vol. 37, no. 3, mar. 1991. [Online]. doi: http://doi.wiley.com/10.1002/aic.690370302

[11] M. R. Hossan, D. Byun, y P. Dutta, "Analysis of microwave heating for cylindrical shaped objects", Int. J. Heat Mass Transf., vol. 53, no. 23-24, pnov. 2010. [Online]. doi: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.07.051

[12] C. Ching Lau, M. Kemal Bayazit, P. J. T. Reardon, y J. Tang, "Microwave Intensified Synthesis: Batch and Flow Chemistry", Chem. Rec., vol. 19, no. 1, ene. 2019. [Online]. doi: https://onlinelibrary.wiley.com/doi/abs/10.1002/tcr.201800121

[13] L. Faxian, L. Jie, y C. Xueling, "Microwave-assisted Synthesis Silver Nanoparticles and Their Surface Enhancement Raman Scattering," Rare Met. Mater. Eng., vol. 46, no. 9, 2017. [Online]. doi: https://doi.org/10.1016/S1875-5372(17)30204-7

[14] X.-Z. Yuan, C. Song, H. Wang, y J. Zhang, Electrochemical Impedance Spectroscopy in PEM Fuel Cells. London: Springer London, 2010. [Online]. Available: https://link.springer.com/book/10.1007/978-1-84882-846-9

[15] J. Hou et al., "Rapid microwave-assisted synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk", Talanta, vol. 146, [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0039914015302459

[16] T. Liang, J. Qian, Y. Yuan, y C. Liu, "Synthesis of mesoporous hydroxyapatite nanoparticles using a template-free sonochemistry-assisted microwave method", J. Mater. Sci., vol. 48, no. 15, 2013. [Online]. Available: http://link.springer.com/10.1007/s10853-013-7328-3

[17] K. K. Rana y S. Rana, "Microwave Reactors : A Brief Review on Its Fundamental Aspects and Applications," OALib, vol. 01, no. 06, 2014. [Online]. doi:https:// 10.4236/oalib.1100686

[18] J. Yesuraj, S. Austin Suthanthiraraj, y O. Padmaraj, "Synthesis, characterization and electrochemical performance of DNA-templated Bi2MoO6 nanoplates for supercapacitor applications," Mater. Sci. Semicond. Process., vol. 90, no. October 2018, pp. 225-235, 2019. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S136980011830979X

[19] D. Sengupta, B. Roy, y B. Basu, "Microwave-assisted Formation of Organic Disulfides of Biochem ical Significance," Curr. Med. Chem., vol. 24, no. 41, 2016. [Online]. Available: http://www.eurekaselect.com/141338/article

[20] S. E. Gilliland, J. M. M. Tengco, Y. Yang, J. R. Regalbuto, C. E. Castano, y B. F. Gupton, "Electrostatic adsorption-microwave synthesis of palladium nanoparticles on graphene for improved cross-coupling activity," Appl. Catal. A Gen., vol. 550, ene. 2018. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0926860X1730529X

[21] K. Karthik, S. Dhanuskodi, S. Prabu Kumar, C. Gobinath, y S. Sivaramakrishnan, "Microwave assisted green synthesis of MgO nanorods and their antibacterial and anti-breast cancer activities," Mater. Lett., vol. 206, 2017. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0167577X17310418

[22] S. Bano et al., "Microwave-assisted green synthesis of superparamagnetic nanoparticles using fruit peel extracts: Surface engineering, T 2 relaxometry, and photodynamic treatment potential," Int. J. Nanomedicine, vol. 11, pp. 3833-3848, 2016. [Online]. Available: https://www.dovepress.com/microwave-assisted-green-synthesis-of-superparamagnetic-nanoparticles--peer-reviewed-article-IJN

[23] H. M. Tellez, J. P. Alquisira, C. R. Alonso, J. G. L. Cortés, y C. A. Toledano, "Comparative kinetic study and microwaves non-thermal effects on the formation of poly(amic acid) 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 4,4′-(hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline (BAPHF). Reaction activated by micr," Int. J. Mol. Sci., vol. 12, no. 10, pp. 6703-6721, 2011. [Online]. Available: http://www.mdpi.com/1422-0067/12/10/6703

[24] E. Ruiz Gómez y L. F. Giraldo Jaramillo, "Nanometrología: Impacto en los sistemas de producción," Cienc. e Ing. Neogranadina, vol. 26, no. 2, pp. 49-72, 2016. [Online]. doi: http://dx.doi.org/10.18359/rcin.1771

[25] Z. G. Wu, L. Li, Z. M. Ren, y L. C. Lv, "Synthesis of palladium nano-squares by polyol-hydrothermal method," Inorg. Chem. Commun., vol. 107, p. 107498, 2019. [Online]. doi: https://doi.org/10.1016/j.inoche.2019.107498

[26] A. Anandaradje, V. Meyappan, I. Kumar, y N. Sakthivel, "Microbial Synthesis of Silver Nanoparticles and Their Biological Potential," en Nanoparticles in Medicine, Singapore: Springer Singapore, 2020, pp. 99-133. [Online]. Available: http://link.springer.com/10.1007/978-981-13-8954-2_4

[27] M. S. Ali y J. A. Priya, "Green Synthesis Of Silver Nanoparticles From Cynodon Dactylon Leaf Extract," Int. J. ChemTech Res. Res, vol. 55, no. 11, pp. 974-4290, 2013. [Online]. Available: http://ijcb.mainspringer.com/5_1/cb501002.pdf

[28] L. Faxian, L. Jie, y C. Xueling, "Microwave-assisted Synthesis Silver Nanoparticles and Their Surface Enhancement Raman Scattering", Rare Met. Mater. Eng., vol. 46, no. 9, sep. 2017. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1875537217302047

[29] X.-Z. Yuan, C. Song, H. Wang, y J. Zhang, Electrochemical Impedance Spectroscopy in PEM Fuel Cells. London: Springer London, 2010. [Online]. Available: http://link.springer.com/10.1007/978-1-84882-846-9

[30] L. M. Quej-Ake, A. Contreras, y J. Aburto, "The effect of non-ionic surfactant on the internal corrosion for X52 steel in extra-heavy crude oil-in-water emulsions," Anti-Corrosion Methods Mater., vol. 65, no. 3, pp. 234-248, may 2018. [Online]. Available. https://www.emeraldinsight.com/doi/10.1108/ACMM-03-2017-1770

[31] M. R. Abidian y D. C. Martin, "Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes," Biomaterials, vol. 29, no. 9, 2008. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0142961207009611

[32] L. M. Gassa, J. R. Vilche, M. Ebert, K. Jüttner, y W. J. Lorenz, "Electrochemical impedance spectroscopy on porous electrodes," J. Appl. Electrochem., vol. 20, no. 4, jul. 1990. [Online]. Available: http://link.springer.com/10.1007/BF01008882

[33] I. . Aoki et al., "Ac-impedance and Raman spectroscopy study of the electrochemical behaviour of pure aluminium in citric acid media," Electrochim. Acta, vol. 46, no. 12, mar. 2001. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0013468601004315

[34] H. V. Tran, C. D. Huynh, H. V. Tran, y B. Piro, "Cyclic voltammetry, square wave voltammetry, electrochemical impedance spectroscopy and colorimetric method for hydrogen peroxide detection based on chitosan/silver nanocomposite," Arab. J. Chem., vol. 11, no. 4, may 2018. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1878535216301277

[35] J. R. Macdonald et al., Impedance Spectroscopy, 2.a ed. Canada: Wiley-Interscience, 2005. pp. 192-200. [Online]. Available: https://www.springer.com/gp/book/9781848828452

[36] J. S. Moon, H. Kim, D.-C. Lee, J. T. Lee, y G. Yushin, "Increasing Capacitance of Zeolite-Templated Carbons in Electric Double Layer Capacitors," J. Electrochem. Soc., vol. 162, n.o 5, 2015. [Online]. Available: https://iopscience.iop.org/article/10.1149/2.0131505jes

[37] M. G. Smitha, B. V. Chaluvaraju, K. N. Anuradha, y M. V. Murugendrappa, "Synthesis, characterization and electrical susceptance studies of Polypyrrole/La0.7Ca0.3MnO3 Nano composites," Mater. Today Proc., vol. 5, no. 1, pp. 3137-3142, ene. 2018. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S2214785318301573