Performance of optical amplifiers with regard to the power penalties of a DWDM XGS-PON

Main Article Content

Ana María Marulando Pungo
Paola Juliana Paredes Cerón
Gustavo Adolfo Gómez Agredo

Article Details

Ana María Marulando Pungo, Universidad del Cauca

Faculty of Electronic Engineering and Telecommunications, Department of Telecommunications.

Paola Juliana Paredes Cerón, Universidad del Cauca

Faculty of Electronic Engineering and Telecommunications, Department of Telecommunications.

Gustavo Adolfo Gómez Agredo, Universidad del Cauca

Faculty of Electronic Engineering and Telecommunications, Department of Telecommunications.

Research Articles


Introduction:This article is the product of the research “Simulation level performance analysis of optical amplifiers for a DWDM XGS-PON network environment”, supported by the Research Group in New Technologies in Telecommunications (GNTT) of the University of Cauca during 2019.

Problem:For the implementation of XGS-PON optical network architectures, amplification processes are required. These generate power penalties that lead to the presence of non-linear phenomena, significantly degrading network performance.

Objective:To analyze the performance of a DWDM / XGS-PON network architecture, respecting the power penalties generated by implementing different types of optical amplifiers in different amplification modes.

Methodology:Compilation of relevant bibliography on long-range network architectures with symmetric speeds of 10 Gbps.

Results:Not working in the ideal region of amplification affects the performance of a DWDM XGS-PON network, generating a migration of a linear to non-linear propagation regime, due to the presence of power penalties such as FWM.

Conclusion:With this investigation it is possible to determine which amplifier should be used according to the needs of the optical network, evaluating the different alternatives available in the market, depending on the cost, configuration and performance of the system.

Originality:A new research is carried out for the performance of DWDM XGS-PON state-of-the-art network architectures, regarding the incidence of non-linear propagation phenomena.

Restrictions:In some cases, the simulation tool requires a high consumption of machine resources and processing time.

[1] M. ul zaman, S. Iqbal y Isha, "Performance analysis of EDFA amplifier for DWDM system," in 2014 International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, 2014, pp. 840-843. [Online]. doi: 10.1109/IndiaCom.2014.6828081

[2] J. F. Grijalba y G. A. Gómez, “Análisis del Desempeño de Formatos de Modulación en Comunicaciones Ópticas sobre Redes WDM,” Universidad del Cauca, Tesis de pregrado, 2010, pp. 1-18. Available: Biblioteca Jose María Serrano, Universidad del Cauca

[3] ITU-T Rec. G.697, Optical monitoring for dense wavelength division multiplexing systems, 2016, pp. 5-10. [Online]. Available:

[4] R. Ramaswami y K. N. Sivajaran, Optical Networks. A pratical perspective, 3rd ed. San Francisco: Morgan Kaufmann Publishers, 2002, pp. 290-292. [Online]. Available:

[5] S. Singh, A. Singh, R.S. Kaler, “Performance evaluation of EDFA, RAMAN and SOA optical amplifier for WDM systems,” Optik, vol. 124, no. 2, pp. 95-101, 2013. [Online]. doi:

[6] M. Á. Yépez Torres, “Sistemas láser con amplificadores semiconductores y de fibra óptica,” Universidad Nacional Autónoma de México, Tesis de pregrado, 2012, pp. 62-67. [Online]. Available:

[7] ITU-T Rec. G.661, Definitions and test methods for the relevant generic parameters of optical amplifier devices and subsystems, 2007, pp. 18-20. [Online]. Available:

[8] ITU-T Rec. G.663, Application-related aspects of optical amplifier devices and subsystems, 2011, pp. 34-35. [Online]. Available:

[9] G. A. Muñoz Castro, “DWDM Networks When Using Raman Configurations with DCF Fibers,” Sist. y Telemática, vol. 15, no. 41, pp. 27–43, 2017. [Online]. doi:

[10] ITU-T Rec. G.665, Características generales de los amplificadores Raman y de los subsistemas con amplificación Raman, 2005, pp. 2-3. [Online]. Available:

[11] J. Putrina, S. Olonkins, V. Bobrovs y G. Ivanovs, "Comparison of discrete and distributed in-line Raman amplifiers in a 16 channel DWDM transmission system," in 2017 Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL), Singapore, 2017, pp. 236-241. [Online]. doi: 10.1109/PIERS-FALL.2017.8293141

[12] ITU-T Rec. G.662, Características genéricas de los dispositivos y subsistemas de amplificadores ópticos, 2005, pp. 2-6. [Online]. Available:

[13] K. A. Mat Sharif, N. A Ngah, A. Ahmad, K. Khairi, Z. A. Manaf y D. Tarsono, "Demonstration of XGS-PON and GPON Co-Existing in the Same Passive Optical Network," in 2018 IEEE 7th International Conference on Photonics (ICP), Kuah, 2018, pp. 1-3. [Online]. doi: 10.1109/ICP.2018.8533167

[14] ITU-T Rec. G.9807.1, 10-Gigabit-capable symmetric passive optical network (XGS-PON), 2016, pp. 24-49. [Online]. Available:

[15] SYNOPSYS, OptSim Product Overview, 2019. [Online]. Available:

[16] R. S. Pressman, Ingeniería del Software, un enfoque práctico, 7th ed. Madrid: McGraw-Hill, 2001, pp. 33-34. [Online]. Available:

[17] Universitat Politéctnica de Catalunya, OPNET: Manual de usuario, Barcelona, 2004, pp. 12-13. [Online]. Available:

[18] E. Villalba Domínguez y E. Y. Ramón Martínez, Desarrollo de sistemas con metodología RUP (Rational Unified Process), Facultad de Ingeniería, Universidad Nacional Autónoma de México (UNAM), Tesis de pregrado, 2012, pp. 113- 130. [Online]. doi:

[19] ITU-T Rec. G. 694, Spectral grids for WDM applications: DWDM frequency grid, 2012, pp. 2-5. [Online]. Available:

[20] ITU-T Rec. G.698.1, Aplicaciones multicanal de multiplexación por división en longitud de onda densa con interfaces ópticas monocanal, 2009, pp. 10-16. [Online]. Available:

[21] ITU-T Rec. G.Sup39, Optical system design and engineering considerations, 2016, pp. 56-58. [Online]. Available:

[22] Alcatel Thalés Research and Technology, 10G SOA, 2016. [Online]. Available:

[23] Fibercore, Product Factnote IsoGain, 2015. [Online]. Available:

[24] Optilab, 5 Channels Raman Laser Source, Rackmount, 2016. [Online]. Available:

[25] CISCO, Cisco ONS 15454 MSTP High-Power CounterPropagating and Co-Propagating Raman Amplifiers, 2012. [Online]. Available: