Techniques and methods for monitoring the evolution of upper limb fine motor skills: literature review

Main Article Content

Juan David Guzmán Villamarín
Diego Enrique Guzmán Villamarín
Carlos Felipe Rengifo Rodas
Jerónimo Londoño Prieto


Introduction: This review article is the product of research on the methods, techniques and devices used in the measurement of fine motor skills of upper limbs and its respective evolution, developed at Universidad del Cauca in 2018.

Problem: Objective measurement of the evolution of upper limb motor skills in the rehabilitation processes. 

Objective: To identify the conventional techniques and electronic devices used in the measurement of the evolution of upper limb motor ability. 

Methodology: Four scientific databases were reviewed in addition to the Google Scholar search engine. The keywords used for the search were: "fine motor skills", "hand measurement", "hand rehabilitation"and "hand function", among others. 

Results: Approximately 3840 articles related to the subject were found. When applying the exclusion criteria, the article number to be revised was reduced to 63, which were analyzed in the present review.

Conclusions: The tools applied by health professionals are convenient due to their rapid execution and easy access, however they can be subject to human error since they depend on the experience of the user. Electronic systems present objective measurements, however, their complexity and cost are high.

Originality: This work presents information on the therapeutic techniques and technological devices used, in certain pathologies, for the evaluation of upper limb motor ability.

Limitations: Not all articles analyzed have a detailed description of the people in which the studies were conducted.


Download data is not yet available.

Article Details

How to Cite
J. D. Guzmán Villamarín, D. E. Guzmán Villamarín, C. F. Rengifo Rodas, and J. Londoño Prieto, “Techniques and methods for monitoring the evolution of upper limb fine motor skills: literature review”, ing. Solidar, vol. 15, no. 29, pp. 1-22, Sep. 2019.
Research Articles


[1] A. Graciani, M. C. Zuluaga-Zuluaga, J. R. Banegas, L. M. León-Muñoz, J. J. De La Cruz, and F. Rodríguez-Artalejo, “Mortalidad cardiovascular atribuible a la presión arterial elevada en la población española de 50 años o más,” Med. Clin. (Barc)., vol. 131, no. 4, pp. 125–129, 2008. [Online]. doi:

[2] Levi, F., Chatenoud, L., Bertuccio, P., Lucchini, F., Negri, E., and La Vecchia, C., “Mortality from cardiovascular and cerebrovascular diseases in Europe and other areas of the world: an update,” European Journal of Cardiovascular Prevention & Rehabilitation, vol. 16, no. 3, pp. 333–350, 2009. [Online]. doi:

[3] D. S. Nichols-Larsen, P. C. Clark, A. Zeringue, A. Greenspan, and S. Blanton, “Factors influencing stroke survivors’ quality of life during subacute recovery,” Stroke, vol. 36, no. 7, pp. 1480–1484, 2005. [Online]. doi:

[4] Á. A. Cuadrado, “Rehabilitación del ACV: evaluación, pronóstico y tratamiento Rehabilitation of the stroke: evaluation, prognosis and treatment,” Galicia Clin. Galicia Clínica | Soc. Galega Med. Interna., vol. 70, no. 3, pp. 25–40, 2009.

[5] F. Silva, C. Quintero, and J. G. Zarruk, “Comportamiento epidemiológico de la enfermedad cerebrovascular en la población colombiana,” Guia neurológica 8. Enferm. Cerebrovasc., no. 2, pp. 21–29, 2007.

[6] C. Mock, M. Peck, E. Krug, and M. Haberal, “Confronting the global burden of burns: A WHO plan and a challenge,” Burns, vol. 35, no. 5, pp. 615–617, 2009. [Online]. doi:

[7] I. Atroshi and H. E. Rosberg, “Epidemiology of amputations and severe injuries of the hand,” Hand Clin., vol. 17, no. 3, pp. 343—50, 2001.

[8] S. P. Chow and C. Ng, “Hand function after digital amputation,” J. Hand Surg. Am., vol. 18, no. 1, pp. 125–128, 1993. [Online]. doi:

[9] H. Burger, T. Maver, and Č. ̌ Marinček, “Partial hand amputation and work,” Disabil. Rehabil., vol. 29, no. 17, pp. 1317–1321, 2007. [Online]. doi:

[10] S. V. Duff, D. H. Aaron, G. R. Gogola, and F. J. Valero-Cuevas, “Innovative evaluation of dexterity in pediatrics,” J. Hand Ther., vol. 28, no. 2, pp. 144–150, 2015. [Online]. doi:

[11] C. M. Tissue, P. F. Velleman, C. W. Stegink-Jansen, D. H. Aaron, B. G. Winthrop, and G. R. Gogola, “Validity and reliability of the Functional Dexterity Test in children,” J. Hand Ther., vol. 30, no. 4, pp. 500–506, 2017. [Online]. doi:

[12] J. Gielen, J. Laton, J. Van Schependom, P. P. De Deyn, and G. Nagels, “The squares test as a measure of hand function in multiple sclerosis,” Clin. Neurol. Neurosurg., vol. 123, pp. 55–60, 2014. [Online]. doi:

[13] A. C. Cowan and C. W. Stegink-Jansen, “Rehabilitation of hand burn injuries: Current updates,” Injury, vol. 44, no. 3, pp. 391–396, 2013. [Online]. doi:

[14] S. Y. Lin, J. K. Chang, P. C. Chen, and H. F. Mao, “Hand function measures for burn patients: A literature review,” Burns, vol. 39, no. 1, pp. 16–23, 2013. [Online]. doi:

[15] J. C. Schneider, H. D. Qu, J. Lowry, J. Walker, E. Vitale, and M. Zona, “Efficacy of inpatient burn rehabilitation: A prospective pilot study examining range of motion, hand function and balance,” Burns, vol. 38, no. 2, pp. 164–171, 2012. [Online]. doi:

[16] E. Davis Sears and K. C. Chung, “Validity and Responsiveness of the Jebsen-Taylor Hand Function Test,” J. Hand Surg. Am., vol. 35, no. 1, pp. 30–37, 2010. [Online]. doi:

[17] M. K. Y. Mak, E. T. L. Lau, V. W. K. Tam, C. W. Y. Woo, and S. K. Y. Yuen, “Use of Jebsen Taylor Hand Function Test in evaluating the hand dexterity in people with Parkinson’s disease,” J. Hand Ther., vol. 28, no. 4, pp. 389–395, 2015. [Online]. doi:

[18] D. H. Kim, D.-H. An, and W.-G. Yoo, “Measurement of upper limb movement acceleration and functions in children with cerebral palsy,” Technol. Heal. Care, vol. 26, no. 3, pp. 429–435, 2018. [Online]. doi:

[19] Y. C. Wang, S. R. Magasi, R. W. Bohannon, D. B. Reuben, H. E. McCreath, D. J. Bubela, R. C. Gershon, and W. Z. Rymer, “Assessing dexterity function: A comparison of two alternatives for the NIH toolbox,” J. Hand Ther., vol. 24, no. 4, pp. 313–321, 2011. [Online]. doi:

[20] M. T. A. Omar, A. H. Alghadir, H. Zafar, and S. Al Baker, “Hand grip strength and dexterity function in children aged 6-12 years: A cross-sectional study,” J. Hand Ther., vol. 31, no. 1, pp. 93–101, 2018. [Online]. doi:

[21] C. Gagnon, I. Lessard, B. Brais, I. Côté, C. Lavoie, M. Synofzik, and J. Mathieu, “Validity and Reliability of Outcome Measures Assessing Dexterity, Coordination, and Upper Limb Strength in Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay,” Arch. Phys. Med. Rehabil., vol. 99, no. 9, pp. 1747-1754, 2018. [Online]. doi:

[22] G. P. Slota, L. R. Enders, and N. J. Seo, “Improvement of hand function using different surfaces and identification of difficult movement post stroke in the Box and Block Test,” Appl. Ergon., vol. 45, no. 4, pp. 833–838, 2014. [Online]. doi:

[23] Y. Tseng, K. Chang, P. Liu, and C. Chang, “Applying the Purdue Pegboard to Evaluate Precision Assembly Performance,” Ind. Eng. Eng. Manag. (IEEM), 2017 IEEE Int. Conf., pp. 1179–1183, 2017. [Online]. doi:

[24] P. Lee, C. H. Liu, C. W. Fan, C. P. Lu, W. S. Lu, and C. L. Hsieh, “The test-retest reliability and the minimal detectable change of the Purdue pegboard test in schizophrenia,” J. Formos. Med. Assoc., vol. 112, no. 6, pp. 332–337, 2013. [Online]. doi:

[25] J. M. Pérez-Mármol, M. C. García-Ríos, M. A. Ortega-Valdivieso, E. E. Cano-Deltell, M. I. Peralta-Ramírez, K. Ickmans, and M. E. Aguilar-Ferrándiz, “Effectiveness of a fine motor skills rehabilitation program on upper limb disability, manual dexterity, pinch strength, range of fingers motion, performance in activities of daily living, functional independency, and general self-efficacy in hand osteoart,” J. Hand Ther., vol. 30, no. 3, pp. 262–273, 2017. [Online]. doi:

[26] O. Rasouli, E. A. Fors, P. C. Borchgrevink, F. Öhberg, and A. K. Stensdotter, “Gross and fine motor function in fibromyalgia and chronic fatigue syndrome,” J. Pain Res., vol. 10, pp. 303–309, 2017. [Online]. doi:

[27] Y. C. Wang, R. Wickstrom, S. C. Yen, J. Kapellusch, and K. A. Grogan, “Assessing manual dexterity: Comparing the WorkAbility Rate of Manipulation Test with the Minnesota Manual Dexterity Test,” J. Hand Ther., vol. 31, no. 3, pp. 339-347, 2018. [Online]. doi:

[28] M. L. Baumann, J. M. Cancio, and K. E. Yancosek, “The suitcase packing activity: A new evaluation of hand function,” J. Hand Ther., vol. 30, no. 3, pp. 359–366, 2017. [Online]. doi:

[29] H. Arwert, S. Schut, J. Boiten, T. Vliet Vlieland, and J. Meesters, “Patient reported outcomes of hand function three years after stroke,” Top. Stroke Rehabil., vol. 25, no. 1, pp. 13–19, 2018. [Online]. doi:

[30] A. Hoang-Kim, F. Pegreffi, A. Moroni, and A. Ladd, “- Measuring wrist and hand function: common scales and checklists,” Injury, vol. 42, no. 3, pp. 253–258, 2011. [Online]. doi:

[31] N. Naughton and L. Algar, “Linking commonly used hand therapy outcome measures to individual areas of the International Classification of Functioning: A systematic review,” J. Hand Ther., vol. 32, no. 2, pp. 243-261, 2018. [Online]. doi:

[32] M. H. Hoonhorst, R. H. Nijland, J. S. Van Den Berg, C. H. Emmelot, B. J. Kollen, and G. Kwakkel, “How Do Fugl-Meyer Arm Motor Scores Relate to Dexterity According to the Action Research Arm Test at 6 Months Poststroke?,” Arch. Phys. Med. Rehabil., vol. 96, no. 10, pp. 1845–1849, 2015. [Online]. doi:

[33] A. L. Webber, J. M. Wood, and B. Thompson, “Fine motor skills of children with amblyopia improve following binocular treatment,” Investig. Ophthalmol. Vis. Sci., vol. 57, no. 11, pp. 4713–4720, 2016. [Online]. doi:

[34] L. Krumlinde-Sundholm, B. Lindkvist, J. Plantin, and B. Hoare, “Development of the assisting hand assessment for adults following stroke: a Rasch-built bimanual performance measure,” Disabil. Rehabil., vol. 4, no. 4, pp. 472-480, 2019. [Online]. doi:

[35] D. Johnson, J. Harris, P. Stratford, and J. Richardson, “Inter-rater reliability of the Chedoke Arm and Hand Activity Inventory,” NeuroRehabilitation, vol. 40, no. 2, pp. 201–209, 2017. [Online]. doi:

[36] C. Jee Chen Hung, N. Perumal, I. Elamvazuthi, M. K. Tageldeen, M. K. A. A. Khan, and S. Parasuraman, “Home-based interactive rehabilitation system for hand,” 2016 2nd IEEE Int. Symp. Robot. Manuf. Autom. ROMA 2016, no. 153, pp. 1-5, 2017. [Online]. doi: 10.1109/ROMA.2016.7847835

[37] R. Posada-Gómez, R. A. Montaño-Murillo, A. Martínez-Sibaja, G. Alor-Hernández, A. A. Aguilar-Lasserre, and M. C. Reyes-Fernández, “An Interactive System for Fine Motor Rehabilitation,” Rehabil. Nurs., pp. 116–124, 2016. [Online]. doi:

[38] U. Röijezon, R. Faleij, P. Karvelis, G. Georgoulas, and G. Nikolakopoulos, “A new clinical test for sensorimotor function of the hand - Development and preliminary validation,” BMC Musculoskelet. Disord., vol. 18, no. 1, pp. 1–13, 2017. [Online]. doi:

[39] L. Wang, T. Meydan, and P. Williams, “An optical sensor for tracking hand articulations,” Proc. IEEE Sensors, pp. 1–3, 2017. [Online]. doi:

[40] N. B. Pham, V. T. Phan, V. B. Nguyen, and V. D. Nguyen, “Game-based virtual rehabilitation system for upper extremity using low-cost camera,” BMEiCON 2015 - 8th Biomed. Eng. Int. Conf., pp 1-5, 2015. [Online]. doi:

[41] Q. Fang and X. Gu, “A new hand function assessment method using an infrared imaging device,” 2017 39th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 1571–1574, 2017. [Online]. doi:

[42] G. Placidi, L. Cinque, M. Polsinelli, and M. Spezialetti, “Measurements by a LEAP-based virtual glove for the hand rehabilitation,” Sensors (Switzerland), vol. 18, no. 3, pp. 1–13, 2018. [Online]. doi:

[43] T. Vanbellingen, S. J. Filius, T. Nyffeler, and E. E. H. van Wegen, “Usability of videogame-based dexterity training in the early rehabilitation phase of stroke patients: A pilot study,” Front. Neurol., vol. 8, no. DEC, pp. 1–9, 2017. [Online]. doi:

[44] M. Iosa, G. Morone, A. Fusco, M. Castagnoli, F. R. Fusco, L. Pratesi, and S. Paolucci, “Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study,” Top. Stroke Rehabil., vol. 22, no. 4, pp. 306–316, 2015. [Online]. doi:

[45] H. K. Tang, Z. Q. Feng, T. Xu, and X. H. Yang, “VR system for active hand rehabilitation training,” ICCSS 2017 - 2017 Int. Conf. Information, Cybern. Comput. Soc. Syst., pp. 316–320, 2017. [Online]. doi:

[46] A. Aşkın, E. Atar, H. Koçyiğit, and A. Tosun, “Effects of Kinect-based virtual reality game training on upper extremity motor recovery in chronic stroke,” Somatosens. Mot. Res., vol. 35, no. 1, pp. 25–32, 2018. [Online]. doi:

[47] L. Huang and M. Chen, “The effectiveness of gardening game design for the upper extremity function of Stroke patients,” Adv. Mater. Sci. Eng. (ICAMSE), Int. Conf., no. 1, pp. 110–112, 2016. [Online]. doi:

[48] L. Zhao, X. Lu, X. Tao, and X. Chen, “A kinect-based virtual rehabilitation system through gesture recognition,” Proc. - 2016 Int. Conf. Virtual Real. Vis. ICVRV 2016, pp. 380–384, 2017. [Online]. doi:

[49] M. A. Cidota, S. G. Lukosch, P. J. M. Bank, and P. W. Ouwehand, “Towards Engaging Upper Extremity Motor Dysfunction Assessment Using Augmented Reality Games,” Adjun. Proc. 2017 IEEE Int. Symp. Mix. Augment. Reality, ISMAR-Adjunct 2017, pp. 275–278, 2017. [Online]. doi:

[50] C. P. Hsiao, C. Zhao, and E. Y. L. Do, “The Digital Box and Block Test Automating traditional post-stroke rehabilitation assessment,” 2013 IEEE Int. Conf. Pervasive Comput. Commun. Work. PerCom Work. 2013, no. March, pp. 360–363, 2013. [Online]. doi:

[51] R. D. J. Friedman N., Chan V., Zondervan D., Bachman M., “MusicGlove: motivating and quantifying hand,” 33rd Annu. Int. Conf. IEEE MBS, pp. 2359–2363, 2011. [Online]. doi:

[52] H.-P. Wang, A.-W. Guo, Z.-Y. Bi, Y.-X. Zhou, Z.-G. Wang, and X.-Y. Lu, “A novel distributed functional electrical stimulation and assessment system for hand movements using wearable technology,” 2016 IEEE Biomed. Circuits Syst. Conf., pp. 74–77, 2016. [Online]. doi:

[53] V. Gracia-Ibáñez, M. Vergara, J. L. Sancho-Bru, M. C. Mora, and C. Piqueras, “Functional range of motion of the hand joints in activities of the International Classification of Functioning, Disability and Health,” J. Hand Ther., vol. 30, no. 3, pp. 337–347, 2017. [Online]. doi:

[54] J. Connolly, J. Condell, B. O’Flynn, J. T. Sanchez, and P. Gardiner, “IMU Sensor-Based Electronic Goniometric Glove for Clinical Finger Movement Analysis,” IEEE Sens. J., vol. 18, no. 3, pp. 1273–1281, 2018. [Online]. doi:

[55] D. Pani, G. Barabino, A. Dessì, I. Tradori, M. Piga, A. Mathieu, and L. Raffo, “A device for local or remote monitoring of hand rehabilitation sessions for rheumatic patients,” IEEE J. Transl. Eng. Heal. Med., vol. 2, no. July 2013, pp. 1-11 2014. [Online]. doi:

[56] A. Othman, N. Hamzah, Z. Hussain, R. Baharudin, A. D. Rosli, and A. I. C. Ani, “Design and development of an adjustable angle sensor based on rotary potentiometer for measuring finger flexion,” Proc. - 6th IEEE Int. Conf. Control Syst. Comput. Eng. ICCSCE 2016, no. November, pp. 569–574, 2016. [Online]. doi:

[57] S. Guo, Y. Liu, Y. Zhang, S. Zhang, and K. Yamamoto, “A VR-based self-rehabilitation system,” 2016 IEEE Int. Conf. Mechatronics Autom., pp. 1173–1178, 2016. [Online]. doi:

[58] J. Kawaguchi, S. Yoshimoto, Y. Kuroda, and O. Oshiro, “Estimation of Finger Joint Angles Based on Electromechanical Sensing of Wrist Shape,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 9, pp. 1409–1418, 2017. [Online]. doi:

[59] S. C. Yeh, S. H. Lee, R. C. Chan, Y. Wu, L. R. Zheng, and S. Flynn, “The Efficacy of a Haptic-Enhanced Virtual Reality System for Precision Grasp Acquisition in Stroke Rehabilitation,” J. Healthc. Eng., vol. 2017, pp. 1-9, 2017. [Online]. doi:

[60] G. E. Francisco, N. Yozbatiran, J. Berliner, M. K. OʼMalley, A. U. Pehlivan, Z. Kadivar, K. Fitle, and C. Boake, “Robot-Assisted Training of Arm and Hand Movement Shows Functional Improvements for Incomplete Cervical Spinal Cord Injury,” Am. J. Phys. Med. Rehabil., vol. 96, no. 10, pp. S171–S177, 2017. [Online]. doi:

[61] K. X. Khor, P. J. H. Chin, C. F. Yeong, E. L. M. Su, A. L. T. Narayanan, H. Abdul Rahman, and Q. I. Khan, “Portable and Reconfigurable Wrist Robot Improves Hand Function for Post-Stroke Subjects,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 10, pp. 1864–1873, 2017. [Online]. doi:

[62] N. J. Pitchford and L. A. Outhwaite, “Can touch screen tablets be used to assess cognitive and motor skills in early years primary school children? A cross-cultural study,” Front. Psychol., vol. 7, no. OCT, pp. 1–14, 2016. [Online]. doi:

[63] Y.-H. Chiu, T.-W. Chen, Y. J. Chen, C.-I. Su, K.-S. Hwang, and W.-H. Ho, “Fuzzy logic-based mobile computing system for hand rehabilitation after neurological injury,” Technol. Heal. Care, vol. 26, no. 1, pp. 17–27, 2018. [Online]. doi: