Trends in materials engineering for the manufacture of photovoltaic solar cells


organic cells
solar cells
solar energy
photovoltaic materials

How to Cite

Cucaita Hurtado, O., & Cabeza Rojas, I. (2017). Trends in materials engineering for the manufacture of photovoltaic solar cells. Ingeniería Solidaria, 13(23), 151-162.


Introduction: This review article was written during the second half of 2016 and the first of 2017 at the School of Environmental Engineering, Universidad Santo Tomás. Photovoltaic solar energy has acquired an important role in the global context due to the use of renewable sources and the reduction of environmental impacts, as well as for being an influential participant in meeting the current energy demand. However, it has limitations such as dependence on the availability of radiation and the use of silicon as a raw material for solar cells. Methodology: We prepared a state of the art of different databases searched, mostly Science Direct and Scopus, on the different alternative materials and current trends and their perspective of operation and implementation. Results: The solar cells that are using different materials are presented, among which the Cadmium Telluride (CdTe) solar cells stand out for their low cost and considerable efficiencies. Conclusion: Copper, indium, gallium, selenium/sulfur (cigs) cells are characterized mainly by their high adsorption coefficient; however, the great challenge to overcome is to implement them in an industrial environment. Organic solar cells are highly efficient and low-cost for their potential use in the Colombian context.


[1] C.E Marín, “La Energía Solar Fotovoltaica En,” J. Artic. , pp 13.14, 2004.

[2] A.L.N.M.I. Millán; and P .A R. Aumente, “Investigación e impacto ambiental de los edificios. La Energía, “ Inf. La Construcción, vol 57, no Figura 1, pp 47-61, 2005.

[3] F. Bellenilla, “La sostenibilidad desde la perspectiva del agotamiento de los combustibles fósiles, un problema socio-ambiental relevante, ”Investigación en la Escuela, vol. 55.pp. 73-87, 2005.

[4] L. Bird et al., “Wind and solar energy curtailment: A review of international experience,” Renew. Sustain. Energy Rev. , vol 65. Pp. 577-586, 2016.

[5] L. M. Peter, “Towards sustainable photovoltaics: the search for newmateriales.,” Philos. Trans. A. Math. Phys. Eng. Sci. ,vol. 369, no 1942, pp. 140-1856, 2011.

[6] T. Energy, “Energía Solar Solar Energy,” J. Artic., Vol 83, no. Energía pp. 561-566, 2008.

[7] E. Lorenzo, “RETRATOS DE LA CONEXIÓN FOTOVOLTAICA A LA RED(IV) Seguidores y huertas solares, “Era Sol., vol 119, no Iv, pp. 6-23, 2004.

[8] Madridsolar, “Guía de la Energía Solar,” 26,vol. 7, p. 66, 2006.

[9] C. E. L. Latunussa, F. Ardente, G. A. Blengini, and L. Mancini, “Life Cycle Assesment of an innovative recycling process for crystalline silicon photovoltaic panels, ”Sol. Energy Mater. Sol. Cells, vol. 146, pp. 101-111, 2016.

[10] O. Enguita, “Análisis del ciclo de vida para el desarrollo de las Reglas de la Categoría de Producto de sistemas solares fotovoltaicos para la edificación” Universitat politécnica de Catalunya, 2012.

[11] J. Del Rio,L. Navas, and L. Sanchez,” Análisis del ciclo de vida de un panel solar fotovoltaico empleado para la alimentación eléctrica de instalaciones de riego, comparando las metodologías ECO-Indicador 99 y EPS-200,” p.5 2000. 2060.%20XIII%20Congreso%20Nacional%20de%20Ciencias%20Hort%C3%ADcolas/Ingenier%C3%ADa%20Hort%C3%ADcola/An%C3 A1lisis%20del%20ciclo%20de%20vida%20de%20un%20panel%20solar%20fotovoltaico%20empleado%20para%20la%20alimentaci%C3%B3n%20el C3%A9ctrica%20de%20instalaciones%20de%20riego,%20comparando%20las%20metodolog%C3%ADas%20ECO-Indicador%2099%20y%20EPS-2000.pdf.

[12] W. A. Chamorro Coral and S. U. Riveros, “ Celdas solares orgánicas, una perspectiva hacia el futuro.” https://www.researchgate.netpublication76307925_Celdas_solares_organicas_una_perspectiva_hacia_el_futuro

[13] B. W. Han, S. C. Park, J. H. Ahn, and B. T. Ahn, “Photovoltaic properties of close-space sublimated CdTe solar cells,” Sol. Energy, vol. 64, no. 1-3,pp. 49-54, 1998.

[14] T. L Chu, S. S. Chu, C. Ferekides, C.Q. Wu, J. Britt, and C. Wang, “13,4% efficient thin-film CdS/CdTe solar cells, “ J. Appl. Phys., vol. 70, no. 12, 1991.

[15] M. A. Green, K. Emery, Y. Hishikawa, W. Warte, and E. D. Dunlop, “Solar cell efficiency tables (version 41),”Prog. Photovoltaics Res. Appl. Vol. 21, no 1, 2013.

[16] M. A. Green, K. Emery, Y. Hishikawa, W. Warte, and E. D. Dunlop, “Solar cell efficiency tables (version 40),”Prog. Photovoltaics Res. Appl. Vol. 20, no 5, 2012.

[17] President’s Advisory Council on Financial Literacy, “Annual Report,” 2008.

[18] E. Regalado-Pérez, M.G Reues-Banda, and X. Mathew, “Influence of oxygen concentration in the CdCl12 treatment process on the photovoltaic properties of CdTe/CdS solar cells, “Thin Solid Films, vol. 582,p. 134-138, 2015.

[19] A. K. Turner et al.,”Stable, high efficiency thin film solar cells produced by electrodeposition of cadmium telluride, “Sol. Energy Mater., vol. 23, no. 2-4 pp. 388-393, 1991.

[20] S. J. C Irvine et al., “The role of transparent conducting oxides in metal organic chemical vapour deposition of CdTe/CdS Photovoltaic solar cells” Thin Solid Filmes, vol. 515, no. 15 SPEC.ISS., pp. 6099-6102, 2007.

[21] S. Arroyo, B. Ortiz, L. Enrique, and C. Vicentina,”Cadmio: efectos sobre la salud. Respuesta celular y molecular,” Acta Toxicológica Argentina, vol. 21, pp. 33-49, 2013.

[22] J. Sites and J.Pan, “Strategies to increase CdTe solar-cell voltage,” Thin Solid Films, vol. 515, no. 15 SPEC. ISS. pp. 6099-6102,

[23] R. Martin, “Celulas solares de teluro de cadmio logran un nuevo record de eficiencia,” MIT Technol. Rev., 2016.

[24] J. M. Delgado-Sanchez et al.,”Front contact optimization of industrial scale CIS solar cells for low solar concentration using 2D physical modeling,” Renew. Energy, vol. 101, pp. 90-95, 2017.

[25] M. Saifulah et al., “Effect of Cu content on the photovoltaic proprieties of wide bandgap CIGS solar cells for low solar concentration using 2D physical modeling” Renew. Energy, vol. 101, pp. 90-95, 2017.

[26] Y. M. Shin, C. S. Lee, D. H. Shin, H. S. Know, B. G. Park, and B. T. Ahn, "Surface modification of CIGS film by annealing and its effect on the band structure and photovoltaic properties of CIGS solar cells," Curr. Appl. Phys., vol. 15, no. 1, pp. 18-24, 2015.

[27] Y. M. Shin, D. H. Shin, J. H. Kim and B. T. Ahn, "Effect of Na doping using Na2S on the structure and photovoltaic properties of CIGS solar cells," Curr. Appl. Phys., vol. 11, no 1, Supplement, pp. S59-S64, 2011.

[28] J. Gutiérrez Berasategui, E, Barriga, "Tecnología CIGS para nuevas células solares," Energias Renovables., p.4, 2012.

[29] B. Farhadi and M. Naseri, "Structural and physical characteristics optimization of a dual junction CGS/SIGS solar cell: A numerical simulation," Optik (Stuttg)., vol. 127, no 21, pp. 1032-10237, 2016.

[30] J.T. Horstmann and K. F. Goser, "Monolithic integration of a silicon micromotor in combination with the CMOS drive circuit on one chip," Microelectron. Eng., vol 67-68, pp. 390-306, 2003.

[31] N. Espinosa and F.C Krebs, "Life cycle analysis of organic tandem solar cells: When are they warranted?, "Sol. Energy Mater. Sol. Cells, vol. 120, no PART B, pp. 692-700, 2014.

[32] F. Martinez et al., " Classical or inverted photovoltaic cells: On the importance of the morphology of the organic layers on their power conversion efficiency," Dye, Pigment., vol. 132, pp. 185-193, 2016.

[33] F. Meyer, "Fluorinated conjugated polymers in organic bulk heterojunction solar cells," Prog. Polym. Sci., vol. 47, pp. 70-91, 2015.

[34] Y. Hunag, E.J. Kramer, A.J. Heeger, and G.C. Bazan, "Bulk heterojunction solar cells: Morphology and performance relationships," Chem. Rev., vol. 114, no.14,pp. 7006-7043, 2014.

[35] Y. Guo et al., " Polymer solar cells with high open-circuit voltage based on novel barbell-shaped bifullerene derivative as acceptor," Chinese J. Chem.,vol 36, no. 1, pp. 172-178, 2016.

[36] D. Gendron and M. Lecler, "New conjugated polymers for plastic solar cells," Energy Environ. Sci., vol. 4, no. 4, pp. 1225-1237, 2011.

[37] T.E. Anderson and M.E Kose, "Impact of solution casting temperature con power conversion efficiencies of bulk heterojunction organic solar cells," J. Photochem. Photobiol. A Chem., vol 318, pp. 51-55, 2016.

[38] G. Chidichimo andL. Filipelli, "Organic solar cells: Problems and perspectives," Int. J. Photoenergy, vol. 2010, 2010.

[39] T. E. Anderson and M. E. Kose, "Impact of solution casting temperature on power conversion efficiencies of bulk heterojunction organic solar cells," J. Photochem. Photobiol. A Chem., vol. 318. 51-55, 2016.

[40] T. Fukua, H. Suzuki, N. Yoshimoto, and Y. Liao, "Controlled donor-acceptor ratio for application of organic photovoltaic cels by alternative intermittent electrospray co-deposition, "Org, Electron., vol. 33, pp. 32-39 2016.

[41] I. Etxebarria, J. Ajuria, and R. Pacios, "Solution-Processable polymeric solar cells: A review on materials, strategies and cell architectures to overcome 10%," Org. Electron. Physics, Mater. Appl., vol 19, pp. 34-60, 2015.

[42] A. Pivrikas, H. Neugebauer, and N. S. Sariciftci, "Influence of processiong additives to nano-morphology and efficiency of bulk-heterojunction solar cells: A comparative review," Sol. Energy, vol. 85, no.6, p. 1226-1237, 2011.

[43] P. Peumans, A Yakimov, and S. R Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," J. Appl. Phys., vol. 93, no. 7, pp. 3693-3723, 2003.

[44] S. S. Sun, "Optimum energy levels and offsets for organic donor/acceptor binary photovoltaic materials and solar cells," Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol 116, no. 3 SPEC.ISS., pp. 251-256, 2005.

[45] S. Sun et al., "Conjugated block copolymers for opto-electronic functions," Synth. Met., vol. 137, no. -3, pp. 883-884, 2003.

[46] B. Pradhan and A. J. Pa, "Organic heterojunction photovoltaic cells: Role of functional groups in electron acceptor materials," Sol. Energy Mater. Sol. Cells, vol. 81, no. 4, pp, 469-476, 2004.

[47] T. Stübinger and W. Brütting, "Exciton diffusion and optical interference in organic donor-acceptor photovltaic cells," J. Appl. Pys., Vol. 90, no. 7, pp. 3632-3641, 2001.

[48] Q. An et al., "Improved efficiency of bulk Heterojunction Polymer Solar Cells by Doping low bandgap small molecule.," ACS Appl. Mater. Interfaces, vol. 186, no August 2016, pp. 161-164, 2014.

[49] H. Zhao, Jungbo and Li, Yunke and Yang, Goufang and Jiang, Kui and Li, Haroan and Ade, Harald and Ma, Wei and Ya, "Efficient organic solar cells processed from hydrocarbon solvents," Nat. Energy, vol. 1, pp. 15-27, 2016.

[50] A. Kovalenko et al., "Towards imporved efficiency of bulk-heterojunction solar cells using various spinel ferrite magnetic nanoparticles," Org. Electron., vol 39, pp. 118-126, 2016.

[51] P. Fan, Y. Zhng, D. Zheng, and J. Yu,"Improved efficiency of bulk heterojunction polymer solar cells by doping with iridium complex," Mater. Left, vol. 186, pp. 161-164, 2017.

[52] L. Lu, T. Xu, W. Chen, E.S Landry, and L. Yu, "Ternary blend polymer solar cells with enhanced power conversion efficiency," Nat.Photonics, vol. 8, no, 9, pp. 716-722, 2014.

[53] A. Mhamdi, W. Boukhili, M. Raissi, M. Mahdouani, L. Vignau, and R. Bourguiga, " Simulation and optimization of the performance of organic photovoltaic cells based on capped copolymers for bulk heterojunctions," Supertattices Microstruct., vol. 96, pp.241-252, 2016.

[54] C. J. Brabec, "Organic photovoltaics: Tecnology and market," Sol. Energy Mater. Sol Cells, vol. 83, no. 2-3, pp. 273-292, 2004.

[55] R. C. Pasquali, D. A. Chiappetta, and C. Bregni, "Los Copolimeros en Bloques Anfitilicos y sus Aplicaciones Farmacéuticas," vol. 24, no. 4, 2005. 24/4/LAJOP_24_4_7_2_GZNEXU4ZPK.pdf

[56] N. Sary et al., " A new supramolecular route for using rod-coil block copolymers in photovoltaic applications," Adv. Mater., vol. 22, no. 6, pp. 763-768, 2010.

[57] C. Yang, J. K. Lee, A. J Heeger, and F. Wild, "Well-defined donor acceptor rod-coil diblock copolymers based on P3HT containing C60: The morphology and role as a surfactant in bulk-heterojunction solar cells," J. Mater. Chem., vol.19, no.30, pp. 5416-5423,2009.

[58] F. Lui,Y. Gu, X. Shen, S. Ferdous, H; W. Wang, and T. P. Russel, "Characterization of the morphology of solution-processed bulk heterojunction organic photovoltaics," Prog. Polym. Sci., vol. 38, no. 12, pp. 1990-2052, 2013.

[59] F. Lui, Y. Gu, J. W. jung, W. H. Jo and T. P. Russell, "On the morphology of polymer-based photovoltaics," J. Polym. Sci. Part B Polym. Phys., vol. 50, no. 15, pp. 1018-1044, 2012.

[60] L. M. Chen, Z. Hong, G. Li, and Y. Yango, "Recent progress in polymer solar cells: Manipulation of polymer: Fullerene morphology and the formation of efficient inverted polymer solar cells," Adv. Mater., vol.21, no 14-15, pp. 1434-149, 2009.

[61] K. M. Coakley and M. D Mc Gehee, "Conugated polymer photovoltaic cells," Chem. Mater., vol. 16, no.23, pp. 4533-4542, 2004.

[62] M. A Ruderer, E. Metwalli, W. Wang, G. Kaune, S.V Roth, and P, Müller-Buschbaum, "Thin films of photoactive polymer blends," ChemPhysChem, vol. 10, no. 4, pp. 664–671, 2009.

[63] H. Hoppe and N. S. Sariciftci, "Morphology of polymer/fullerene bulk heterojunction solar cells," J. Mater. CheM., vol. 16, no.1, pp.45-61, 2006.

[64] D. M Stoltzfus et al., "Improved efficiency of polymer-fullerene bulk heterojunction solar cells by the addition of Cu(II)-porphyrin-oligothiophene conjugates," Synth. Met., vol. 218, pp. 1–8, 2016.

[65] A. L Fagua W. F. B. S, "Celdas Solares Orgánicas Organic Solar Cells Células solares orgânicas," vol. II, pp. 71–81, 2015.

Copyright (c) 2017 Journal of Engineering and Education


Download data is not yet available.