A Review of the Particularities of the Respiratory System of Birds :

Universidad Cooperativa de Colombia
Médica Veterinaria Zootecnista de la Universidad del Tolima. Magíster en Ciencias Pecuarias de la Universidad del Tolima. Docente de la Facultad de Medicina Veterinaria y Zootecnia de la Universidad Cooperativa de Colombia, sede Ibagué.
email: cvsanmiguel@gmail.com

Universidad Cooperativa de Colombia
Médica Veterinaria Zootecnista de la Universidad del Tolima. Magíster en Nutrición y Producción de Monogástricos de la Universidade Estadual de Maringá, Brasil. Doctorado en Nutrición y Producción de Monogástricos de la Universidade Estadual de Maringá, Brasil. Docente de la Facultad de Medicina Veterinaria y Zootecnia de la Universidad Cooperativa de Colombia, sede Ibagué.
email: linam.penuela@campusucc.edu.co
The respiratory system of birds is the most efficient among vertebrates, due to the adaptive anatomical characteristics of the lungs, a markedly thin tissue barrier, the development of air sacs and a unidirectional air flow that makes it possible to maintain a nearly constant volume. In addition to gas exchange, the respiratory system actively participates in the organism’s acid-base balance, thermoregulation, excretion of toxins and vocalization. The acid-base balance is based on the ratio between carbonic acid (H2CO3) and ion bicarbonate (HCO3-), by means of which the respiratory system is constantly complemented by the kidneys in their blood pH regulatory function. Any change in this ratio causes respiratory acidosis and metabolic alkalosis, according to its source. That is why environmental and handling changes that exceed the strict parameters of temperature, environmental oxygen and CO2 concentration demand greater efforts from birds´ homeostatic mechanisms, particularly at the hemodynamic level, which affects their health and productive parameters.
Darryl H. Avian respiratory anatomy and physiology. Saunders Company; 1997. 1055-937X. 97/0604.
Gunkel C, Lafortune M. Topics in medicine and surgery. Current techniques in avian anesthesia. Seminars in Avian and Exotic Pet Medicine. 2005; 14 (4):263, 276.
Farmer C. On the origin of avian air sacs. Respiratory Physiology & Neurobiology. 2006; 154:89-106.
Powell F. Sturkie`s Avian Physiology. Respiration. 5a. ed.. Cap 10; 2000. p. 231-245.
Watson R, Fu Z, West J. Minimal distensibility of pulmonary capillaries in avian lungs compared whit mammalian lungs. Respiratory Physiology and Neurobiology. 2008; 160:208-14.
Wangensteen D, Rahn H. Respiratory gas exchange by the avian embryo. Respiration Physiology. 1971; 11:1.
Mortola J. Review Gas exchange in avian embryos and hatchlings. Comparative Biochemistry and Physiology. Part A. 2009; 153:359-77.
Pilarski J, Hempleman S. Development of avian intrapulmonary chemoreceptors. Respiratory Physiology and Neurobiology. 2007; 157:393-402.
Thompson M. Comparison of the respiratory transition at birth or hatching in viviparous and oviparous amniote vertebrates. Comparative Biochemistry and Physiology. Part A. 2007; 148:755-60.
Janke O, Tzschentke B, Hochel J, Nichelman M. Metabolic responses of chicken and muskovy duck embryos to high incubation temperatures. Comparative biochemistry and physiology. Part A. Molecular & Integrative Physiology. 2002; 131(4):741-50.
Brown R, Brain J, Wang N. The avian respiratory system: A unique model for studies of respiratory toxicosis and for monitoring air quality. Environmental health perspectives.1997; 105:188-200.
León-Velarde F, Monje C. Avian embryos in hipoxic environments. Respiratory Physiology & Neurobiology. 2004; 141:331-43.
Nichellman M, Tzschentke B. Ontogeny of thermoregulation in precocial birds. Comparative Biochemistry and Physiology. Part A. 2002; 131:751-63.
Tzschentke B. Monitoring the development of thermoregulation in poultry embryos and its influence by incubation temperature computers and electronics in agriculture. 2008; 6(4):61-71.
Bellairs R, Osmond M. The Atlas of Chick Development, 2nd ed. Elsevier San Diego: Academic Press; 2005.
Scheuermann DW, Klika E, de Groodt-Lasseel MHA, Bazantova I, Switka A. An electron microscopic study of the parabronchial epithelium in the mature lung of four bird species. Anat Rec. 1998; 249:213-25.
Prado-Rebolledo O, Morales B, Quintana L, Gonzales A, Arce M. Oxígeno adicional en incubación del pollo de engorde. Archivos de Zootecnia. 2009; 58(221):85-91.
Everaert N, Willemsen A, Hulikova H, Brown E, Decuypere P et al. The importance of carbonic anhydrase II in red blood cells during exposure of chicken embryos to CO2. Respiratory Physiology & Neurobiology. 2010; 172:164-71.
Luquetti B, Gonzales E, Bruno L, Furlan R, Macari M. Egg traits and physiological neonatal chick parameters from broiler breeder at different ages. Revista brasileira de ciencia avicola. 2004; 6(1):13-17.
Morita V, Boleli I, Cargnelutti A. Hematological values and body, heart and liver weights of male and female broiler embryos of young and old breeder eggs. Revista brasileira de ciencia avicola. 2009; 11(1):7-15.
Wideman R, Hamal K. Idiopathic pulmonary arterial hypertension: An avian model for plexogenic arteriopathy and serotonergic vasoconstriction. Journal of Pharmacologycal and Toxicological Methods. 2011; 63:283-95.
Paula V, Fantoni D, Otsuki D, Aular J. Blood gas and electrolyte values for amazon parrots. Pesquisas veterinarias. Brasileira. 2008; 28(2):108-12.
Maina J. A systematic study of the development of the airway (bronchial) system of the avian lung from days 3 to 26 of embryogenesis: a transmission electron. Tissue & Cell. 2003; 35:375-91.
Maina J. Morphogenesis if the laminated, tripartite, cytoarchitectural design of the blood-gas barrier of the avian lung: a systematic electron microscopic study on the domestic fowl, Gallus gallus variant domesticus. Tissue & Cell. 2004; 36:129-39
Makanya A, Hlushchuk R. Review. The pulmonary blood–gas barrier in the avian embryo: Inauguration, development and refinement. Respiratory Physiology and Neurobiology; 2011; 178; 1:30-8
Chiba Y, Khandoker A, Nobuta M, Moriya K, Akiyama R, Tazawa H. Development of respiratory rhythms in perinatal chick embryos. Comparative Biochemistry and Physiology. Part A. 2002; 131:817-24.
Rowlett K, Simkiss K. Respiratory gases and acid base balance in shell less avian embryos. Journal exp Biology. 1989; 143:529-36.
Tzschentke B, Halle I. “Temperature training” during the last days of incubation: a new method to improve poultry performance. Lohmann information. 2010; 47:127-33.
Dawes C, Simkiss K. The effects of respiratory acidosis in the chick embryo. Journal exp Biol. 1971; 55:77-84.
Simkiss K. Water and ion fluxes inside the egg. Am. Zool. 1980; 20:385-393.
Naas I, Gigli A, Baracho M, Almeida P, Salgado D. Estimating the impact of environmental conditions on hatching results using multivariable analysis. Revista brasileira de ciencia avícola. 2008; 10(4):215-22.
Adrogué H, Gennari J, Galla J, Madias N. Assessing acid-base disorders. Kidney International. 2009; 76:1239-47.
Comito R, Reece W, Trampel D, Koehler K. Physiology, endocrinology, and reproduction. Acid-base balance of the domestic turkey during thermal panting. Poultry Science. 2007; 86:2347-52.
Ueda Y, Aizawa M, Takahashi A, Fujii M, Isaka Yoshitaka. Exaggerated compensatory response to acute respiratory alkalosis in panic disorder is induced by increased lactic acid production. Nephrology Dialysis Transplantation. 2009; 24:825-8.
Marklet J. Avian ventilatory physiology: the coordination of running and breathing and the cost of ventilation. [Tesis doctoral]. Utah: The University of Utah. UMI: 3432069; 2010.
Friis U, Plovsing R, Hansen K, Laursen B, Wallstedt B. Teaching acid/base physiology in the laboratory. Advance Physiology Education. 2010; 34:233-8.
Hidalgo I, Mena V, Fernández B, Heredero M, Ruiz W. Acidosis metabólica, un reto para los intensivistas. Revista Cubana de Pediatría. 2005; 77:2.
Salcedo A. Evento cerebro vascular y acidosis metabólica. Revista Ciencias de la Salud. 2008; 6:1.
Marrufo D, Quintana J, Castañeda M. Efecto de la ventilación por presión positiva sobre los parámetros productivos de pollo de engorde durante siete semanas en caseta de ambiente natural. Veterinaria México. 1999; 30(001): 99-103.
Fedde M. Relationship of structure and function of the avian respiratory system to disease susceptibility. Poultry Science. 1998; 77-8:1130-8.
Toth T, Siegel P. Cellular defense of the avian respiratory tract: paucity of free-residing macrophages in then normal chicken. Avian diseases. 1986; 30(1):67-75.
Kothlow S, Kaspers B. The avian respiratory immune system. Avian Immunology. 1st. ed. London: Academic Press; 2008. p. 273-88.
Toth T, Siegel P, Veit H. Cellular defense of the avian respiratory system. Influx of phagocytes: elicitation versus activation. Avian diseases. 1987; 31(4):861-7.
Klasing KC, Laurin DE, Peng RK, Fry DM. Immunologically mediated growth depression in chicks: Influence of feed intake, corticosterone and interleukin-1. Journal Nutr. 1987; 117:1629-37.
Chhabra P, Goel M. Immunological response of chickens to Micoplasma gallisepticum infection. Avian diseases. 1980; 25(2):279-93.
Xing Z, Cardona C, Li J, Dao N, Tran T, Andrada J. Modulation of the immune responses in chicken by low-pathogenicity avian influenza virus H9N2. Journal of General Virology. 2008; 89:1288-99.
Perozo F, Villegas P, Dolz R, Afonso C, Purvis L. The vg/ga strain Newcastle Disease virus: mucosal immunity protection against lethal challenge and molecular analysis. Avian Pathology. 2008; 37(3):237-45.
Santin E, Maiorka A, Polveiro W, Paulillo A, Laurentiz A et al. Effect of environmental temperature on immune response of broilers. Journal Appl Poult Res. 2003; 12:247-50.
Rosenberger JK, Gelb J. Response to several avian respiratory viruses as affected by infectious bursal disease virus. Avian diseases. 1978; 22(1):95-105.
Manual de la OIE sobre animales terrestres. Capítulo 2.3.12. Paris: oie; 2008.
En calidad de autor del artículo, declaro que este, es un trabajo original, inédito, de mi creación exclusiva, que no se ha postulado a evaluación simultánea en otra publicación y que no cuenta con algún impedimento de cualquier naturaleza para la concesión de los derechos previstos en este contrato.
En ese sentido, me comprometo a esperar un resultado de evaluación de la revista, antes de considerar su presentación a otro medio, en caso de que la respuesta de publicación no sea positiva; adicionalmente, me comprometo a responder por cualquier acción de reivindicación, plagio u otra clase de reclamación que al respecto pudiera sobrevivir por parte de terceros.
Asimismo, declaro que como autor o coautor, estoy de acuerdo por completo con los contenidos presentados en este trabajo y cedo todos los derechos patrimoniales, es decir, la reproducción, comunicación pública, distribución, divulgación, transformación, puesta a disposición y demás formas de explotación de la obra por cualquier medio o procedimiento, a la revista y a la Editorial de la Universidad Cooperativa de Colombia.