Bacterial Resistance to Antibiotics: Mechanisms of Transfer : Mechanisms of Transfer

Universidad Cooperativa de Colombia
Bacterióloga de la Universidad Católica de Manizales. Especialista en Laboratorio Clínico Veterinario de la Universidad de Ciencias Aplicadas Ambientales (UDCA). Magíster en Microbiología de la Universidad Nacional de Colombia. Docente del Programa de Medicina Veterinaria y Zootecnia de la Universidad Cooperativa de Colombia, sede Ibagué.
email: maria.sanchez@campusucc.edu.co

Universidad Cooperativa de Colombia
Médico Veterinario Zootecnista de la Universidad del Tolima. Especialista en Docencia Universitaria de la Universidad Cooperativa de Colombia, sede Bogotá. Docente del Programa de Medicina Veterinaria y Zootecnia de la Universidad Cooperativa de Colombia, sede Ibagué.
email: rafael.munoz@campusucc.edu.co

Universidad Cooperativa de Colombia
Ingeniera Industrial de la Universidad de Ibagué. Especialista en Gerencia del Talento Humano de la Universidad del Tolima. Docente del Programa de Medicina Veterinaria y Zootecnia de la Universidad Cooperativa de Colombia, sede Ibagué.
email: norma.gutierrez@campusucc.edu.co
Antimicrobial resistance bacteria have drawn the interest of researches because their adaptive ability has hampered treatment and therefore, the eradication of diseases that stem from their pathogenic action. This was observed soon after the successful beginning of pharmacological therapy around the world that later proved to be inefficient. This is currently a challenge for science. Continuing study of antimicrobial resistance has made it possible to understand how bacteria can overcome therapeutic strategy by means of genetic transference. Diverse mechanisms have been identified for transferring resistance between bacterium of the same species and different species through exchanges of genes that imply the participation of elements such as plasmids, sequence insertion, integrons, transposons and bacteriophages. These permit gene recombination, where genetic elements with two different origins come together in one unit, through such mechanisms as transformation, transduction and conjugation. This review discusses the three transfer mechanisms mentioned above and the participation of genetic exchange elements for the transfer of bacterial resistance to antibiotics with the aim of facilitating understanding of the processes of defense of these microorganisms that directly or indirectly affect animal and human health.
Lederberg J, Tatum EL. Gene recombination in E. coli. 4016. Nature. 1946; 158: 558.
Felsenstein J, Yokoyama, S. The evolutionary advantage of recombination. ii. individual selection for recombination. Genetics. 1974; 78:737-56.
Anderson ES. The ecology of transferable drug resistance in the enterobacteria. Annu Rev Microbio. 1968; 22:131-8.
Levin BR, Stewart FM, Rice V. The kinetics of transfer of nonconjugative plasmids transmission: fit of a simple mass action model. Plasmid. 1979; 2:247-260.
Bale MJ, Fry MJ. Plasmid transfer between etrains of Pseudomonas aeruginosa on membrane filters attached to river stones. J Gen Microbiology. 1987; 133: 3099-107.
Ghigo JM. Natural conjugative plasmid induce bacterial Biofilm development. Nature. 2001; 412:442-5.
Worcel A, Burgi E. On the structure of the folded chromosome of Escherichia coli. J Mol Microbiology. 1972; 71:127.
Brock TD, Madigan MT. Microbiología. 6. s.l.: Prentice Hall Hispanoamericana; 1993.
Lin YS et al. The chromosomal DNA of Streptomyces lividans 66 is linear. Mol Microbiology. 1993; 10:923-33.
Ferdows MS, Barbour AO. Megabase-sized 1 the bacterium Borrelia burgdoferi the lime disease. USA, Natí Acad Sci. 1989; 86:5969-73.
Gómez-Eichelmann MC, Camacho-Carranza R. El nucleoid bacteriano. Lat Amer Microbiology. 1995; 37:281-90.
Jiménez L, Merchant F. Biología celular y molecular. México: Pearson Educación; 2003.
Zaragosa R et al. Microbiologia aplicada al paciente crítico. Madrid: Panamericana; 2007.
Ausina-Ruiz V, Moreno-Guillén S. Tratado SEIMC de enfe medades infecciosas y microbiología clínica. Madrid : Médica Panamericana; 2005.
Sambrook J, Rusell DW. Molecular cloning: a laboratory manual. New York: Spring Cold Harbor Laboratory Press; 2001. Vol. 2.
Barbour AG. Plasmid analysis of Borrelia burgdorferi, the lyme disease agent. J Clin Microbiology. 1988; 26:475-8.
Yang CC et al. The terminall proteins of linear streptomyces chromosomes and plasmids: a novel class of replication priming proteins. Molecular Microbiology. 2002; 43:297-305.
Baker S et al. A novel linear plasmid mediates flagellar variation in Salmonella Typhi. PloS Pathog. 2007:3:59.
Hartley JL, Donelson JE. Nucleotide sequence of the yeast plasmid. Nature. 1980; 286:860-5.
Poole K. Efflux-mediated multiresistance in Gram- negative bacteria. Clinical Microbiology and infection. 2004; 10:12-26.
Morita Y et al. Aputative multidrug efflux protein, of vibrio parahaemolyticus its homolog in Escherichia coli. Antimicrobial agents and chemotherapy. 1998; 42:1778-82.
Conjugative plasmids in multi-resistant bacterial isolates fron indian soil. Ansari MI, Grohmann E, Malik, A. Journal of Applied Microbiology. 2008; 104:1774-81.
McClintock B. Mutable loci in maize. Carnegie Inst Washington Year Book. 1951; 47:154-81.
Lewin B. Genes IV. Barcelona: Reverté; 1996.
Shapiro JA. Mobile genetic elements. USA: Academic Press; 1983.
Heffron F, Craig R, Falkow S. Genetics Translocation of a plasmid dna sequence which mediates ampicillin resistance: Molecular nature and specificity of insertion. USA: s.n. Proc Nat Acad Sci. 1975; 72:3623-7.
Ohta S et al. Presence of a characteristic D-D-E motif in IS1 transposase. Journal of Bacteriology. 2002; 184:22;6146-54.
Curtis H, Schnek A, Flores G. Invitación a la biología. Buenos Aires: Editorial Médica Panamericana; 2006.
Hall RM, Collis CM. Mobile gene cassettes and integrons: capture and spread of genes by site specific recombination. Mol Microbiol. 1995; 15:593-600.
González-R G et al. Integrones y cassettes genéticos de resistencia: estructura y rol frente a los antibacterianos. Revista de Medicina de Chile. 2004; 132:619-26.
Jones ME et al. Widespread occurrence of integrons causing multiple antibiotic resistance in bacteria. Lancet. 1997; 349:1742-3.
Mazel D et al. A Distinctive Class of Integron in the vibrio cholera genome. Science. 1998, 280:605-8.
Schmidt AS et al. Characterizationn of class 1 integrons associated with R-plasmids in clinical Aeromonas salmonicida isolates from various geographical areas. The Journal of Antimicrobial Chemotherapy. 2001; 47:735-43.
Nesvera J, Hochmannová J, Pátek M. An integron of class1 is present on the plasmid pCG4 from gram-positive bacterium corynebacterium glutamicum. FEMS Microbiology Letters. 1998; 169:391-3.
Partridge SR et al. Definition of the attI1 site of class 1 integrons. Microbiology. 2000; 146:2855-64.
Arakawa Y et al. A novel integron-like element carrying the metallo-beta-lactamase gene blaIMP. Antimicrobial Agents and Chemotherapy. 1995; 39:1612-5.
Manning PA, Clark CA, Focareta T. Gene capture in Vibrio cholerae. Trends In Microbiology. 1999; 7:93-5.
Carattoli A. Importance of integrons in the diffusion of resistance. Veterinary research. 2001; 32:243-59.
Recchia GD, Sherrat DJ. Gene acquisition in bacteria by integron mediated site specific recombination. [aut. libro]. Nancy L Craig et al. Mobile DNA II. Washington D.C.: Asm Press; 2002. p. 162-76.
Tortora GJ, Berdell F, Case CL. Introducción a la microbiología. Buenos Aires: Editorial Médica Panamericana, Inc.; 2007.
White PA, McIver, CJ, Rawlinson WD. Integrons and Gene Cassettes in the Enterobacteriaceae. Antimicrob Agents Chemother. 2001; 45:2658-61.
Tran JH, Jacoby GA. Mechanism of plasmid-mediated quinolone resistance. Proceedings of the National Academy of Science of United States of America. 2002; 99:5638-42.
Griffith F. The Significance of Pneumococcal Types. Journal of Hygiene. 1928; 27:113-59.
Dubnau D. Genetic competence in Bacillus subtilis. Microbiol Mol Biol Rev. September 3, 1991; 55:395-424.
Aulton M. Farmacia: Ciencia y diseño de formas farmacéuticas. s.l.: Elsevier: 2004.
Rasched I, Oberer E. Ff coliphages: Structural and functional. Microbiology. 1986; 50:401-27.
Holmes RK, Jobling MG. Genetics: conjugation. In: Baron´s medical microbiology. 4. s.l.: Univ of Texas Medical Branch; 1996.
Negrete-Redondo P et al. Presencia de pásmidos en Pseudomonas aisladas de peces de ornato. Vet Mex. 2003; 34(3):289-95.
Goldstein W et al. Transferable plasmid-mediated antibiotic resistance in Acinetobacter. Plasmid. 1983; 10:138-47.
Mantilla JR et al. Caracterizacion molecular de Kleibsiella pneumoniae productora de B-lactamasas de espectro extendido BLEE del tipo CTX-M-12. Infectio. 2004; 8 :2:143.artínez L, Pascual A, Jacoby GA. Quinolone resistance from a transferable plasmid. Lancet. 1998; 351:797-9.
En calidad de autor del artículo, declaro que este, es un trabajo original, inédito, de mi creación exclusiva, que no se ha postulado a evaluación simultánea en otra publicación y que no cuenta con algún impedimento de cualquier naturaleza para la concesión de los derechos previstos en este contrato.
En ese sentido, me comprometo a esperar un resultado de evaluación de la revista, antes de considerar su presentación a otro medio, en caso de que la respuesta de publicación no sea positiva; adicionalmente, me comprometo a responder por cualquier acción de reivindicación, plagio u otra clase de reclamación que al respecto pudiera sobrevivir por parte de terceros.
Asimismo, declaro que como autor o coautor, estoy de acuerdo por completo con los contenidos presentados en este trabajo y cedo todos los derechos patrimoniales, es decir, la reproducción, comunicación pública, distribución, divulgación, transformación, puesta a disposición y demás formas de explotación de la obra por cualquier medio o procedimiento, a la revista y a la Editorial de la Universidad Cooperativa de Colombia.