Successful viral adaptation of Classical Swine Fever (strain C) to cell culture in order to produce vaccines

Grupo Empresarial LABIOFAM
email: esp7.desarrollo@labiofam.cu

Grupo Empresarial LABIOFAM
email: esp7.desarrollo@labiofam.cu

Grupo Empresarial LABIOFAM
email: esp7.desarrollo@labiofam.cu
Introduction: Classical swine fever (CSF) is a viral, infectious and cross border disease that causes important economic losses worldwide. Systematic and preventive immunization with live attenuated vaccines is pretty useful for its control; among these lapinized vaccines are within the most used. However, ethical limitations surrounding its production obliges bio-pharmaceutical industry to search for alternatives. The aim of this research is to adapt strain C of the CSF virus to a rabbit and pig cell culture.
Methodology: rabbit kidney lines (RK-13) and pig’s (PK-15) were used. Both were infected with an homogenous spleen + blood, retrieved from white neo-Zealand rabbits, inoculated with master seed virus (strain C, 4th pass) from lapinized vaccine against the PPC fabricated by LABIOFAM, Cuba. In order to evaluate viral adaptation and replication within cellular lines, during the 23rd passes post-infection, it was identified a fragment of gen that codifies the E2 protein from the CSF virus, through reverse transcription technique –Polymerase chain reaction (RT-PCR) and the quantification of infectious viral titles (DICT50 /mL) by immunoperoxidase.
Results: lapinidized strain C was adapted to cellular lines RK-13 and PK-15 after 23 successive passes, obtaining in the last one greater levels of viral replication with infectious titles of 105.8 DICT50 /mL.
Conclusions: cellular lines RK-13 and PK-15 were susceptible to strain C infection, although PK-15 showed greater levels of viral replication.
[2] Singh VK, Rajak K, Kumar A, Yadav SK. Classical swine fever in India: status and future perspective. Trop Anim Health Prod.2018; 50(6):1181-1191.
[3] Moennig V, Becher P, Beer M. Classical swine fever. DevBiol (Basel). 2013; 135:167-74.
[4] Rios L, Núñez JI, Díaz de Arce H, Ganges L, Pérez LJ. Revisiting the genetic diversity of classical swine fever virus: A proposal for new genotyping and subgenotyping schemes of classification. Transbound Emerg Dis. 2018; 65(4):963-971.
[5] Luo Y, Li S, Sun Y, Qiu HJ. Classical swine fever in China: a minireview. Vet Microbiol. 2014; 172(1-2):1-6.
[6] Ferrer E, Fonseca O, Percedo MI, Abeledo MA. La Peste Porcina Clásica en las Américas y el Caribe: actualidad y perspectivas de control y erradicación. Rev Salud Anim. 2010; 32(1):11-21.
[7] Postel A, Moennig V, Becher P. Classical swine fever in Europethe current situation. Berl Munch Tierarztl Wochenschr. 2013; 126(11-12):468-75.
[8] Schulz K, Staubach C, Blome S. African and classical swine fever: similarities, differences and epidemiological consequences. Vet Res. 2017; 48:84.
[9] vanOirschot JT. Vaccinology of classical swine fever: from lab to field. Vet Microbiol. 2003; 96:367–84.
[10] Moennig V, Becher P. Pestivirus control programs: how far have we come and where are we going? Anim Health Res Reviews. 2015; 16(1): 83–87.
[11] Tavira C, Ortega GA, Dávila GI, Estrada MS, Meneses AA. Alcances y perspectivas del cultivo de células animales en la biotecnología farmacéutica. Rev Mex Cien Farm. 2009; 40(4):35-46.
[12] Fernanda ML, Ramírez G, Jaime CJ, Vera AV. Cultivos celulares como alternativa para el aislamiento y la producción de biológicos contra el Virus de Influenza. Nova 2011; 9(15): 83-93.
[13] Leiva PO, Lorenzo RF, Calderón GR. Producción del antígeno viral para la vacuna de la Encefalomiocarditis Porcina en un cultivo en suspensión de la línea BHK21 C13. REDVET 2013; 14 (2).
[14] Dill V, Hoffmann B, Zimmer A, Beer M, Eschbaumer M. Influence of cell type and cell culture media on the propagation of foot-and-mouth disease virus with regard to vaccine quality. Virol J. 2018; 15:46.
[15] Faburay B, Desiree A, Scott DM, Wilson W. Richt JA. Status of Rift valley fever Vaccine development. Vaccines (Basel). 2017; 5(3): 29.
[16] Matthew R. Sandbulte, Anna R. Spickler, Pamela K. Zaabel, James A. Roth. Optimal use of vaccines for control of influenza A virus in swine. Vaccines (Basel). 2015; 3(1): 22–73.
[17] Sakyi LB, Palomar AM, Bradford EL, Shkap V. Propagation of the Israeli vaccine strain of Anaplasma centrale in tick cell lines. Vet Microbiol. 2015; 179(3-4):270–276.
[18] Pardo G, Almora E, Fidalgo O. Ensayo in vitro para detectar la presencia de agentes adventicios en un banco de células de trabajo. VacciMonitor. 2001; 1: 17-21.
[19] CENPALAB. Código Práctico del Uso de los Animales de Laboratorio del CENPALAB. La Habana, Cuba. 1992.
[20] Riera L, Lugo S, Sosa I, Entrena A, Acevedo MC, Tabares T, et al. Programas de aseguramiento de la calidad en la producción de animales de laboratorio. Rev Salud Anim. 2008; 30(1):12-6. Disponible en:
http://scielo.sld.cu/pdf/rsa/v30n1/rsa02108.pdf
[21] European Commission Guidance Document. 2010. National Competent Authorities for the implementation of Directive 2010/63/EU on the protection of animals used for scientific purposes. A working document on the development of a common education and training framework to fulfill the requirements under the Directive. Brussels, http://ec.europa.eu/environment/chemicals/lab_animals/pdf/guidance/education_training/en.pdf
[22] Guillen J. FELASA Guidelines and Recommendations. Journal of the American Association for Laboratory Animal Science. 2012; 51(3): 311–321.
[23] AVMA American Veterinary Medical Association Guidelines on Euthanasia 2013.
[24] Chiok KL, Manchego SA, Rivera G H, Sandoval CN, Ramírez VM. Standardization and validation of qualitative real time RT-PCR for detection of Classical Swine Fever virus. Rev. Inv. Vet Perú. 2011; 22 (4):377-387.
[25] Sullivan DG, Akkina RK. A nested PR assay for differentiation of Pestiviruses. Virus Res 1995; 38: 231-239.
[26] Mather J, Roberts P. Introduction to cell and tissue culture: theory and technique. genentechinc. South San Francisco, California, 2002.p.1-3.
[27] Reed L, Muench H. A simple, method of estimating 50 percent end point. Am Ind Hyg Assoc J. 1938; 27: 493–497.
[28] Gladue DP, Holinka LG, Largo E, Fernández SI, Carrillo C, O'Donnell V, Baker BR, et al. Classical swine fever virus p7 protein is a viroporin involved in virulence in swine. J Virol. 2012; 86(12):6778-91.
[29] Grummer B, Fischer S, Depner K, Riebe R, Blome S, Greiser WI. Replication of classical swine fever virus strains and isolates in different porcine cell lines. Dtsch Tierarztl Wochenschr. 2006; 113(4):138-42.
[30] Lorena J, Barlic MD, Lojkić M, Madić J, Grom J, Cac Z, Roić B, et al. Classical swine fever virus (C strain) distribution in organ samples of inoculated piglets. Vet Microbiol. 2001; 81(1):1-8.
[31] Kumar R, Barman NN, Khatoon E, Rajbongshi G, Deka N, Morla S, Kumar S. Molecular characterization of E2 glycoprotein of classical swine fever virus: adaptation and propagation in porcine kidney cells. In Vitro Cell Dev Biol Anim. 2015; 51(5):441-6.
[32] Tong C, Chen N, Liao X, Yuan X, Sun M, Li X, et al. Continuous passaging of a recombinant C-strain virus in PK-15 cells selects culture-adapted variants that showed enhanced replication but failed to induce fever in rabbits. J Microbiol Biotechnol.2017; 27(9):1701-1710.
[33] Shi ZX, Sun JF, Guo HC, Yang Z, Ma ZY, Tu CC. Downregulation of cellular protein heme oxygenase 1 inhibits proliferation of classical swine fever virus in PK-15 cells. Virus Res. 2013; 173:315–320.
[34] Sun J, Jiang Y, Shi Z, Yan Y, Guo H, He F, Tu C. Proteomic alteration of PK-15 cells after infection by classical swine fever virus. J Proteome Res. 2008; 7(12): 5263-69.
[35] Rivero VB, Gualandi GL, Buonavoglia C, Mortarino P. A study on the susceptibility of minipig kidney (MPK) and rabbit kidney (RK13) cell line cultures to the lapinized Chinese strain of hog cholera virus. Microbiol. 1988; 11(4):371-8.
[36] Dezengrini R, Weiblen R, Flores EF. Selection and characterization of canine, swine and rabbit cell lines resistant to bovine viral diarrhea virus. J Virol Meth. 2006; 137:51–57.
[37] Becher P, Orlich M, Kosmidou A, KoÈnig M, Baroth M, Ju-Èrgen TH. Genetic diversity of Pestiviruses: identification of novel groups and implications for classifications.Virology. 1999; 262: 64-71.
[38] Gong W, Lu Z, Zhang L, Xie X, Jiang D, Jia J, et al. In vitro adaptation and genome analysis of a sub-subgenotype 2.1c isolate of classical swine fever virus. Virus Genes. 2016; 52(5):651-9. doi: 10.1007/s11262-016-1350-x.
[39] Li C, Li Y, Shen L, Huang J, Sun Y, Luo Y, et al. The role of noncoding regions of classical swine fever virus C-strain in its adaptation to the rabbit. Virus Res. 2014; 183:117–122.
[40] Li Y, Xie L, Zhang L, Wang X, Li C, Han Y, et al. The E2 glycoprotein is necessary but not sufficient for the adaptation of classical swine fever virus lapinized vaccine C-strain to the rabbit. Virology. 2018; 519: 197-206.
[41] Fahnoe U, Pedersen AG, Risager PC, Nielsen J, Belsham GJ, Hoper D, et al. Rescue of the highly virulent classical swine fever virus strain “Koslov” from cloned cDNA and first insights into genome variations relevant for virulence. Virology. 2014; 468-470C: 379–387.
[42] Tamura T, Sakoda Y, Yoshino F, Nomura T, Yamamoto N, Sato Y, et al. Selection of classical swine fever virus with enhanced pathogenicity reveals synergistic virulence determinants in E2 and NS4B. J Virol. 2012; 86(16):8602–8613.
[43] Cheng Z, Xiaofang S, Rui W, Ling L, Zishu P. Classical swine fever virus nonstructural protein p7 modulates infectious virus production. Scientific Reports. 2017; 7(12995). doi: 10.1038/s41598-017-13352-w.

This work is licensed under a Creative Commons Attribution 4.0 International License.
En calidad de autor del artículo, declaro que este, es un trabajo original, inédito, de mi creación exclusiva, que no se ha postulado a evaluación simultánea en otra publicación y que no cuenta con algún impedimento de cualquier naturaleza para la concesión de los derechos previstos en este contrato.
En ese sentido, me comprometo a esperar un resultado de evaluación de la revista, antes de considerar su presentación a otro medio, en caso de que la respuesta de publicación no sea positiva; adicionalmente, me comprometo a responder por cualquier acción de reivindicación, plagio u otra clase de reclamación que al respecto pudiera sobrevivir por parte de terceros.
Asimismo, declaro que como autor o coautor, estoy de acuerdo por completo con los contenidos presentados en este trabajo y cedo todos los derechos patrimoniales, es decir, la reproducción, comunicación pública, distribución, divulgación, transformación, puesta a disposición y demás formas de explotación de la obra por cualquier medio o procedimiento, a la revista y a la Editorial de la Universidad Cooperativa de Colombia.