Avaliações seminais e novas ferramentas genômicas na estimação da fertilidade em touros

Contenido principal del artículo

Wilder Hernando Ortiz Vega
Valter Luiz Maciel-Júnior

Detalles del artículo

Sección
Revisión

Resumen

Tema e Alcance: A estimativa da fertilidade do reprodutor é uma ferramenta importante na escolha do macho, não só porque reflete o estado individual do reprodutor, mas também porque dito resultado influencia o futuro do rebanho, a presente revisão aborda o assunto fertilidade no macho bovino desde a perspectiva da biotecnologia do sêmen. Características: descreve as características seminais que influenciam o potencial reprodutivo e apresenta de forma geral técnicas laboratoriais rotineiras e inovadoras na avaliação de espermatozoides. Documentos base na área de biotecnologia de sêmen foram utilizados na revisão assim como artigos das ultimas 4 décadas e até hoje, aspectos chaves de manuais e livros de difusão mundial complementam o acervo bibliográfico referenciado. Achados: o amplo número de estudos sobre o tema e a diversidade nos resultados, pressupõem gargalos no conhecimento que abrem uma janela na utilização de ferramentas genômicas que permitam explicar com maior acurácia os diferentes eventos fisiológicos envolvidos na expressão das características seminais referentes à fertilidade. Conclusões: a variância genética e  as mudanças epigenéticas podem estar influenciando o potencial reprodutivo no macho, fenômenos funcionais ainda pouco conhecidos precisam ser elucidados no intuito de compreender, e tal vez alterar dita variação entre e inter reprodutores.
[1] Baldassarre H., & Karatzas C. Advanced assisted reproduction technologies (ART) in goats. Anim Reprod Sci. 2004; 82 83 : 255 -256.
[2] Watson P.F. The causes of reduced fertility with cryopreserved semen. Anim. Reprod. Sci., 2000; 60−61, 481−492.
[3] Moore F.L., & Reijo-Pera R.A. Male sperm motility dictated by mother’s mtDNA. Am. J. Hum. Genet. 2000; 67, 543−548. DOI: 10.1086/303061
[4] Bonde J. P., Ernst E., Jensen T.K., Hjollund N.H., Kolstad H., Henriksen T.B., et al. Relation between semen quality and fertility: a population-based study of 430 first-pregnancy planners. Lancet. 1998; 352, 1172−1177.
[5] Budworth, P.R., Amann, R.P., & Chapman, P.L. Relationships between computerized measurements of motion of frozen-thawed bull spermatozoa and fertility. J Androl. 1998; 9, 41−54.
[6] Aitken R.J., Sutton M., Richardson D.W., & Warner P. Relationship between the movement characteristics of human spermatozoa and their ability to penetrate cervical mucus and zona-free hamster oocytes. J Reprod. Fertil. 1985; 73, 441−449.
[7] Guienne B., Humbolt P., Thibier M., & Thibault C. Evaluation of bull semen fertility by homologous in vitro fertilization tests. Reprod. Nutr. Dev. 1990; 30, 259-266.
[8] Corner J.S., & Barratt C.R. Genomic and proteomic approaches to defining sperm. In: The Sperm Cell .2006; pp. 49-71. Cambridge: Cambridge University Press.
[9] Amann R., & DeJarnette J. Impact of genomic selection of AI dairy sires on ther likely utilization and methods to estimate fertility: A paradigm shift. Theriogenology, 2012). 77:795-817. DOI: 10.1016/j.theriogenology.2011.09.002
[10] Dobson H., Smith R., Royal M., Knight C., & Sheldo, I. The higth prodution dairy cow and its reproductive performance. Rerpod. Domest. Anim. 2007; 42 Supl 2:17-23. DOI: 10.1111/j.1439-0531.2007.00906.x
[11] Santos J., Thatcher W., Chebel R., Cerri R., & Galvão K. The effect of embryonic death rates in cattle on the efficacy of estrus sychronization programs. Anim. Reprod. Sci. 2004; 83:513-535.
[12] McDanield T., & Kuehn L. Male Chromosome Hinders Female Cattle Reproduction. Agricultural Research. 2014; Vol 62 Iss, 4: 12,13.
[13] Fordyce G., Fitzpatrick L., Cooper N., VJ, D., De Faveri J., & Holroyd R. Bull selection and use in Northem Australia.5. Social Behaviour and management. Animal Reproduction Science. 2002; 71: (1-2) 81-99.
[14] Miller D.J., & Hunter A.G. Individual Variation for In Vitro Fertilization Success in Dairy Bulls. J Dairy Sci . 1987; 70:2150-215.3.
[15] Aoyagil Y., Fujii K., Iwazumi Y., Furudate M., Fukui Y., & Ono H. Effects of two treatments on semen from different bulls on in vitro fertilization results of bovine oocytes. Theriogenology. 1988; VOL. 30 NO. 5.
[16] DeJarnette J., Saacke R., Bame J., & Vogler C. Accessory sperm: their importance to fertility and embryo quality, and attempts to alter their numbers in artificially inseminated cattle. J ANIM SCI. 1992; 70:484-491.
[17] Zodinsanga P., Mavi P., Cheema R., Kumar A., & Gandotra V. Relationship Between Routine Analysis/Sperm Function and Fertility Test of Catle Bull semen. Asian Journal of Animal Science. 2015; 9 (1) 1819-1878. DOI: 10.3923/ajas.2015.37.44
[18] Clay J.. How ERCR's will be computed and published. Dairy genetics and reproductive management cow college. 1987. Blackbug: Virginia Polytchnic Inst State Univ.
[19] Clay J., & McDaniel B. Computing mating bull fertility from DHI nonreturn data. J. Dairy Sci. 2001; 84, 1238–1245.
[20] Puglisi R., Pozzi A., Foglio L., Spanò M., Euleteri P., Grollino M., et al. The usefulness of combining traditional sperm assessments with in vitro heterospermic insemination to identify bulls of low fertility as estimated in vivo. Animal Reproduction Science . 2012; 132 : 17– 28. DOI: 10.1016/j.anireprosci.2012.04.006
[21] Kuhn M., Hutchison J., & Norman H. Modeling nuisance variables for prediction of service sire fertility. Jour Dairi Sci. 2008; 91: 2823–2835. DOI: 10.3168/jds.2007-0946.
[22] Rodriguez-Martinez H. Methods for sperm evaluation and their relationship to fertility. Congresso Brasileiro de Reprodução Animal. 2005; pp. 1-9. Goiânia, GO.
[23] Rodriguez-Martinez H. Laboratory Semen Assessment and Prediction of Fertility: still Utopia?. Reprod Dom Anim . 2003; 38, 312–318
[24] Graham J., & Mocé E. Fertility evaluation of frozen/thawed semen. Theriogenology .2005; 64 : 492–504.
[25] Crespilho A., Freitas Dell'Aqua C., & Dell Aqua Jr J. Impacto do sêmen no sucesso dos programas de IATF: métodos básicos e avançados de avaliação. 3 Simpósio Internacional de Reprodução Animal Aplicada, 2008; (pp. 78-94). Londrina.
[26] Freitas Dell'Aqua C., Crespilhio A., Papa F., & Dell'Aqua Jr J. Metodologia de avaliação laboratorial do sêmen congelado bovino. Rev. Bras. Rerpod. Anim. 2009; 33, n.4 :213-222.
[27] Rodriguez-Martinez H. Can we increase the estimative value of semen assessment? Rerpoduction in Domestic Animals. 2006; 41 (Suppl 2): 2-10.
[28] Gonçalves P.B.D., Ricardo J.D., & De Figuerêdo F.V. Biotecnicas Aplicadas à Reprodução Animal. 2008; Sâo Paulo: ROCA LTDA.
[29] Bernardi M. Tecnologias aplicadas no exame do ejaculado suíno para a produção. Acta Scientiae Veterinariae. 2008; 36.(1): 5-16.
[30] Papa, F., Crespilho, A., Freitas Dell'Aqua, C., & Dell'Aqua Jr, J. Impacto do sêmen no sucesso dos programas de IATF: métodos básicos e avançados de avaliação. 3 Simpósio Internacional De Reprodução Animal Aplicada, 2008; (pp. 78-94). Paraná.
[31] Hancock J., & Trevan D. The acrosome and post-nuclear cap of bull spermatozoa. J. R. Microsc. Soc., 1957; 76, 77–83.
[32] Saacke R. Fertility in the bovine male: current status and future prospects (an opinion). Proceedings of the 18th Technical Conference on Artificial Insemination .2000; pp. 90-96. British Library Board and other contributors.
[33] Thundathil J., Palasz A., Mapletoft R., & Barth A. An investigation of the fertilization characteristics of pyriform-shaped bovine spermatozoa. Anim Reprod. Sci.1999; 57:35–50.
[34] Barth A., & Oko R. Abnormal Morphology of Bovine Spermatozoa. Iowa: Iowa State University Press.1989.
[35] Fawcett D. The mammamalian spermatozoom. Developmental Biology. 1975; 44:394-436.
[36] Blom E. The ultrastructure of some characteristic sperm defects and a proposal for a new classification of the bull spermiogram. Nord Vet Med, 1973; 25:383–91.
[37] CBRA-Colégio Brasileiro de Reprodução Animal. Manual para exame andrológico e avaliação de sêmen animal. In: C. C. Animal, manual para exame andrológico e avaliação de sêmen animal. 2013. Belo Horizonte: 3 edição.
[38] Casagrande J., Pinheiro L., Almeida C., & JBS. F. Patologia espermática agrupada segundo Blom (1972) na avaliação de sêmen para congelação. Rev Bras Reprod Anim, 1980; v.3, p.19-23.
[39] Arruda R.D., Eneiva C., Celeghini A., Andrade A., Garcia J., Nascimento C., et al. Importância da qualidade do sêmen em programas de IATF e TEFT. 1 simpósio internacional de reprodução animal aplicada. 2004; (pp. 166-179). Londrina, PR.
[40] Walters A.H., Eyestone W.E., Saacke R.G., . Pearson R.E., & Gwazdauskas F.C. Sperm Morphology and Preparation Method Affect Bovine Embryonic Development. Journal of Andrology. 2004; 25 (4):554–563.
[41] Amann R.P., & Hammerstedt R.H. In Vitro Evaluation of Sperm Quality: an opinion. Journal of Andrology .1993; 14 (6) 397-406.
[42] Kastelic J., & Thundathil J. Breeding Soundness Evaluation and Semen Analysis for Predicting Bull Fertility. Reprod Dom Anim. 2008; , 43 (Suppl. 2), 368–373. DOI: 10.1111/j.1439-0531.2008.01186.x
[43] Harrison R., & Vickers S. Use of fluorescent probes to assess membrane integrity in mammalian spermatozoa. Journal of Reproduction and Fertility. 1990; v.88, n.1, p.343-352.
[44] Brito L., Barth A., Bilodeau-Goeseels S., & Panich P. Comparison of methods to evaluate the plasmalemma of bovine sperm and their relationship with in vitro fertilization rate. Theriogenology .2003; 60, 1539–1551.
[45] Celeghini E., Arruda, R., De Andrade A., Nascimento J., & Raphael C. Practical Techniques for Bovine Sperm Simultaneous Fluorimetric Assessment of Plasma, Acrosomal and Mitochondrial Membranes. Reprod Dom Anim. 2007; 42, 479–488.
[46] Jeyendran, R., Van Der Ven, H., Perez-Pelaez, M., Crabo, B., & Zaneveld, L. Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. J Reprod Fertil. 1984; 70, 219–228.
[47] Tartaglione, C., & Ritta, M. Prognostic value of spermatological parameters as predictors of in vitro fertility of frozen-thawed bull semen. Theriogenology. 2004; v.62, p.1245-1252.
[48] Januskauskas A.J., Johannisson A., & Rodriguez-Martinez H. Subtle membrane changes in cryopreserved bull semen in relation with sperm viability, chromatin structure, and field fertility. . Theriogenology. 2003; v.60, p.743-758.
[49] Srivastava, N., Srivastava, S., Ghosh, S., Kumar, A., Perumal, P., & Jerome, A. Acrosome membrane integrity and cryocapacitation are related to cholesterol content of bull spermatozoa. Asian Pacific Journal of Reproduction. 2013; 126-131. DOI:10.1016/S2305-0500(13)60132-3
[50] THundathil J., Palasz A.B., & Mapletoft R. Plasma membrane and acrosomal integrity in bovine spermatozoa with the knobbed acrosome defect. Theriogenology. 2001; 58: 87-102.
[52] Chandler D., & Williams J. Intracellular divalent cation release in pancreatic acinar cells during stimulus secretion coupling. I. Use of chlorotetracycline as fluorescent probe. J Cell Biol . 1978; 76:371–85.
[53] Aitken R. Sperm function tests and fertility. International Journal of Andrology. 2006; v.29, p.69-75.
[54] Silva P., & Gadella B. Detection of damage in mammalian sperm cells. Theriogenology 2006; 65; 958–978
[55] Nagy S., Hallap T., Johannisson A., & Rodriguez-Martinez H. Changes in plasma membrane and acrosome integrity of frozen-thawed bovine spermatozoa during a 4 h incubation as measured by multicolor flow cytometry. Animal Reproduction Science , 2004; 80: 225–235.
[56] Miki K., QU W., GOULDING E., WILLIS W., BUNCH D., STRADER L., et al. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc Natl Acad Sci USA. 2004; 101:16501–6.
[57] Mukai C., & Okuno, M. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol Reprod . 2004; 71:540–7.
[58] Alessandra G., Lacalandra G.M., Filannino A., Pizzi, F., Nicassio M., Dell’Aquila M.E., et al. Assessment of viability, chromatin structure stability, mitochondrial function and motility of stallion fresh sperm by using objective methodologies. Journal of Cell and Animal Biology. 2010; Vol. 4(2), pp. 034-041.
[59] Garner D., Thomas C., Joerg H., DeJarnette J., & Marshall C. Fluorometric assessments of mitochondrial function and viability in cryopreserved bovine spermatozoa. Biol Reprod. 1997; 57:1401–1406.
[60] Hammoud S.S., Nix D.A., Zhang, H., Purwar, J., Carrell, D.T., & Cairns, B.R. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009; Vol 460: 47-479. DOI: 10.1038/nature08162
[61] Aitken R.J. Whither must spermatozoa wander? The future of laboratory seminology. Asian Journal of Andrology. 2010a; 12: 99–103. DOI: 10.1038/aja.2008.42
[62] Sakkas D., & Alvarez J.G. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertility and Sterility. 2010; Vol. 93, No.4, 1027-1036. DOI: 10.1016/j.fertnstert.2009.10.046
[63] Rybar R., Faldikova L., Faldyna M., & Machatkova M.R. Bull and boar sperm DNA integrity evaluated by sperm chromatin structure assay in the Czech Republic. Vet. Med. – Czech. 2004; 49, (1): 1–8.
[64] Aleem M., Padwal V., ChoudharI J., Balasinor N., & Gill-Sharma M. K. Sperm protamine levels as indicators of fertilising potential in sexually mature male rats. Andrologia , 2008; 40, 29–37. DOI: 10.1111/j.1439-0272.2008.00805.x
[65] Brewer L., Corzett M., & Balhorn R. Condensation of DNA by Spermatid Basic Nuclear Proteins. The journal of biological chemistry,. 2002; Vol. 277, No. 41, Issue 11: 38895–38900.
[66] McLay D.W., & Clarke H. J. Remodelling the paternal chromatin at fertilization in mammals. Reproduction. 2003; 125, 625–633.
[67] Balhorn R. A Model for the Structure of Chromatin in Mammalian Sperm. The journal of cell biology .1982; Vol. 93, 298-305.
[68] Zini A., Boman J.M., Belzile E., Ciampi A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod. 2008; 23: 2663-8. DOI: 10.1093/humrep/den321
[69] Carrell D.T., Wilcox A.L., Lowy L., Peterson C.M., Jones K.P., Erickson L., Campbell B., Branch D.W., Hatasaka H.H. Elevated sperm chromosome aneuploidy and apoptosis in patients with unexplained recurrent pregnancy loss. Obstet Gynecol. 2003; 101:1229-35.
[70] Aitken, R., & De Iuliis, G. On the possible origins of DNA damage in human spermatozoa. Molecular Human Reproduction. 2010b; Vol.16, No.1 pp. 3–13. DOI: 10.1093/molehr/gap059
[71] Natali, A., & Turek, P.J. An Assessment of New Sperm Tests for Male Infertility. Urology, 2011; 77: 1027–1034. DOI: 10.1016/j.urology.2010.10.005
[72] Evenson D.P., Larson K.L., & Jost L.K. Sperm Chromatin Structure Assay: Its Clinical Use for Detecting Sperm DNA Fragmentation in Male Infertility and Comparisons With Other Techniques. Journal of Andrology, 2002; Vol. 23, No.1, 25- 43.
[73] Erenpreiss, J., Spano, M., Erenpreisa, J., Bungum, M., & Giwercman, A. Sperm chromatin structure and male fertility: biological and clinical aspects. Asian J Androl. 2006; 8 (1): 11–29.
[74] Januskauskas, A.J., & Rodriguez-Martinez, H. Assessment of sperm quality through fluorometry and sperm chromatin structure assay in relation to field fertility of frozen thawed semen from swedish AI bulls . Theriogenology . 2001; 55:947-961.
[75] Garcia-Macias V., De Paz P., Martinez-Pastor F., Alvarez M., Gomes-Alves, S., Bernardo, J., et al. DNA fragmentation assessment by flow cytometry and SpermBos-Halomax (bright-field microscopy and fluorescence microscopy) in bull sperm. Int J Androl .2006; 30, 88–98.
[76] Martínez-Pastor F., Fernández-Santos D.R., Domínguez-Rebolledo A., Esteso M., & Garde J. DNA Status on Thawed Semen from Fighting Bull: A Comparison Between the SCD and the SCSA Tests. Reprod Dom Anim. 2009; 44, 424–431 DOI: 10.1111/j.1439-0531.2008.01098.x
[77] Hallap, T. Assessment of sperm attributes of frozen-thawed AI doses from Swedish and Estonian dairy bulls sires. Tese de doutorado (Divison of comparative Reproduction, Obstetrics and Udder Health), ISSN 1652-6880, 34. (S. U. Sciences, Ed.) Upsala: Department of Clinical Sciences - Swedish University of Agricultural Sciences. 2005.
[78] Zhang B., Larsson B.N.L., & Rodríguez-Martíinez H. Relationship between embryo o development in vitro and 56- day non-return rates of frozen-thawed semen from dairy AI bulls. Theriogenology . 1997; 48, 221–231.
[79] Schneider CS; Ellington JE; Wright Jr., RW. Relationship between bull field fertility and in vitro embryo production using sperm preparation methods with and without somatic cell co-culture. Theriogenology. 1999; 51:1085-1098.
[80] Zhang B.R., Larsson B., Lundeheim N., Haard M.G., & Rodriguez-Martinez H. Prediction of bull fertility by combined in vitro assessments of frozen±thawed semen from young dairy bulls entering an AI-programme. international journal of andrology. 1999; 22:253-260 .
[81] Al Naib A., Hanrahan J., Lonergan P., & Fair S. In vitro assessment of sperm from bulls of high and low field fertility. Theriogenology. 2011; 76 : 161–167. DOI: 10.1016/j.theriogenology.2010.10.038
[82] Morado S., Pereyra V., Breininger E., Sara R., & Cetica P. Study of Sperm Evaluation Parameters to Estimate Cryopreserved Bovine Semen Fertility. Austin J Vet Sci & Anim Husb, 2015; Volume 2 Issue 1 :1- 4.
[83] Kadarmideen H. N. Genomics to systems biology in animal and veterinary sciences: Progress, lessons and opportunities. Livestock Science. 2014; 166 :232–248. DOI:10.1016/j.livsci.2014.04.028
[84] Bonilla, E., & XU, E. Y. Identification and characterization of novel mammalian spermatogenic genes conserved from fly to human. MHR-Basic Science of Reproductive Medicine , 2008; Vol.14, No.3: 137–142. DOI: 10.1093/molehr/gan002
[85] Li G., Peñagaricano F., . Weigel K.A., Zhang, Y., Rosa G., & Khatib H. Comparative genomics between fly, mouse, and cattle identifies genes associated with sire conception rate . J. Dairy Sci. 2012; 95 :6122–6129. DOI: 10.3168/jds.2012-5591
[86] Park Y.-J., KIM J., You Y.-A., & Pang M.-G. Proteomic Revolution to Improve Tools for Evaluating Male Fertility in Animals. J Proteome Res. 2013; 12(11):4738-47. DOI: 10.1021/pr400639x
[87] Roncoletta , m., Carvalho, E. M., Esper, C.R., Barnabe, V.H., Franceschini, P.H. Fertility-associated proteins in Nelore Bull sperm membranes. Animal Reproduction Science. 2006; 91: 77–87.
[88] Killian, G. Fertility-associated proteins in male and female reproductive fluids of cattle. Anim. Reprod., 2012; .9 (4) :703-712.
[89] D’Amours O., Frenette G., Fortier M., Leclerc P., & . Sullivan R. Proteomic comparison of detergent-extracted sperm proteins . Reproduction. 2010; 139, no. 3, 545–556. DOI: 10.1530/REP-09-0375
[90] Park, Y.-J., Kwon, W.-S., Oh, S.-A., & Pang, M.-G. Fertility-Related Proteomic Profiling Bull Spermatozoa Separated by Percoll. J. Proteome Res. 2012 ; 2, 11, 4162−4168. DOI: 10.1021/pr300248s
[91] Jodar M., Selvaraju S., Sendler E., Diamond M.P., & Krawetz S.A. The presence, role and clinical use of spermatozoal RNAs. Human Reproduction Update. 2013; Vol.19, No.6 pp. 604–624. DOI: 10.1093/humupd/dmt031
[92] Rahman M.S., Lee J.-S., Kwon W.-S., & Pang, M.-G. Sperm Proteomics: Road to Male Fertility and Contraception. International Journal of Endocrinology 2013; Volume 2013, Article ID 360986, 11 pages. http://dx.doi.org/10.1155/2013/360986

[93] Fortes M.R., . Deatley K.L., Lehnert S.A., Burns B.M., Reverter A., Hawken R.J., et al. Genomic regions associated with fertility traits in male and female cattle: Advances from microsatellites to high-density chips and beyond. Animal Reproduction Science. 2013; 141: 1– 19. DOI:10.1016/j.anireprosci.2013.07.002
[94] Cochran S.D., Cole J.B., Null D.J., & Hansen P.J. Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle. BMC Genetics. 2013; 14:49; 1 -23. DOI: 10.1186/1471-2156-14-49
[95] Santos D. J., Peixoto M.G., Tonhati A.H., Carvalho M.R., & Silva M.V. Análise de associação global para identificar locos relacionados às produções de leite, de gordura e de proteína na raça Guzerá. 2013; X Simpósio Brasileiro de Melhoramento Animal. Uberaba.
[96] Casas E., Ford J.J., & Roher G. A. Quantitative Genomics of Male Rerpoduction. In: Z. Jiang, & T. L. Ott, Reproductive Genomics in Domestic Animals .2010; p. 458. Iowa: Blackwell Publishing.
[97] Feugang J.M., KAYA A., Page G.P., Chen L., Mehta T., HIRANI K., et al. Two-stage genome-wide association study identifies integrin beta 5 as having potential role in bull fertility . BMC Genomics .2009; 10:176. DOI: 10.1186/1471-2164-10-176
[98] Fortes M.R., Reverter A., Hawken R.J., Bolormaa S., & Lehnert, A.S. Candidate Genes Associated with Testicular Development, Sperm Quality, and Hormone Levels of Inhibin, Luteinizing Hormone, and Insulin-Like Growth Factor 1 in Brahman Bulls. Biology of Reproduction. 2012; 87(3):58, 1–8. DOI: 10.1095/biolreprod.112.101089
[99] Chenoweth, P. Effects of the male on the embryo. Revista Brasileira de Reprodução Animal. 2011; v.35, n.2.154-159.
[100] Khatib, H. Single nucleotide polymorphisms associated with bull fertility. 2014; Patente Nº 13/798,181. Estados Unidos.