• Artículos de revisión

    Amelogénesis imperfecta

    Vol. 17 Núm. 2 (2021)
    Publicado: 2021-07-12

    ¿un indicio de alteraciones renales?

    Victor Hugo Simancas Escorcia
    Corporación Universitaria Rafael Núñez
    María del Pilar Luján
    Corporación Universitaria Rafael Núñez

    Introducción: La Amelogénesis Imperfecta (AI) constituye un grupo heterogéneo de alteraciones que impactan la estructura del esmalte dental de origen genético. Esta patología producto de cambios fisiológicos durante la odontogénesis, modifica la estructura y apariencia clínica del esmalte, otorgándole un aspecto delgado y de menor resistencia. Se ha descrito que la AI puede aparecer de manera aislada o de manera sindrómica.

    Propósito: Describir los síndromes que impactan el sistema renal y cursan con amelogénesis imperfecta de acuerdo a la evidencia científica actual.

    Método: se realizó una búsqueda electrónica de literatura hasta septiembre de 2019, con los términos Amelogenesis imperfecta, renal AND/OR Amelogenesis Imperfecta y Syndrome AND/OR Amelogenesis Imperfecta.

    Resultados: Fueron pre-seleccionando 1660 artículos, de los cuales 52 fueron tenidos en cuenta para esta revisión. Se identificó que el síndrome Amelogénesis imperfecta-Nefrocalcinosis, Síndrome de Raine, Síndrome de Bartter, Acidosis tubular renal distal y la Hipomagnesemia primaria familiar con hipercalciuria y nefrocalcinosis son afecciones renales que cursan concomitantemente con un fenotipo dental.

    Conclusión: Esta revisión ha permitido demostrar que las alteraciones del esmalte dental tipo AI constituye un signo de alerta para entidades patológicas que impactan el funcionamiento renal. Se recomienda que los profesionales de la odontología, una establecido el diagnosticado de amelogénesis imperfecta, consideren realizar la remisión de estos pacientes a un servicio de nefrología.

    Palabras clave: amelogénesis imperfecta, esmalte dental, proteínas del esmalte dental, genes, síndrome

    Cómo citar

    Amelogénesis imperfecta: ¿un indicio de alteraciones renales? . (2021). Revista Nacional De Odontología, 17(2), 1-20. https://doi.org/10.16925/2357-4607.2021.02.05

    Zheng L, Ehardt L, McAlpin B, About I, Kim D, Papagerakis S, et al. The tick tock of odontoge-nesis. Experimental Cell Research. 2014; 325(2):83–9. doi: 10.1016/j.yexcr.2014.02.007

    Bei M. Molecular genetics of ameloblast cell lineage. J Exp Zool B Mol Dev Evol. 2009; 312B(5):437–44. doi:10.1002/jez.b.21261

    Prasad MK, Geoffroy V, Vicaire S, Jost B, Dumas M, Le Gras S, et al. A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involve-ment. J Med Genet. 2016; 53(2):98–110. doi:10.1136/jmedgenet-2015-103302

    Coffield KD, Phillips C, Brady M, Roberts MW, Strauss RP, Wright JT. The psychosocial impact of developmental dental defects in people with hereditary amelogenesis imperfecta. J Am Dent Assoc. 2005; 136(5):620–30. doi: 10.14219/jada.archive.2005.0233

    Hutton B, Catalá-López F, Moher D. La extensión de la declaración PRISMA para revisio-nes sistemáticas que incorporan metaanálisis en red: PRISMA-NMA. Med Clin (Barc). 2016; 147(6):262–6. doi: http://dx.doi.org /10.1016/j.medcli.2016.02.025 0025-7753

    Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535. doi: https://doi.org/10.1136/bmj.b2535

    Crawford PJM, Aldred M, Bloch-Zupan A. Amelogenesis imperfecta. Orphanet J Rare Dis. 2007; 2:17. doi: 10.1186/1750-1172-2-17

    Chamarthi V, Varma BR, Jayanthi M. Amelogenesis imperfecta: a clinician’s challenge. J Indian Soc Pedod Prev Dent. 2012; 30(1):70–3. doi: 10.4103/0970-4388.95587

    Oliveira AFB, Chaves AMB, Rosenblatt A. The influence of enamel defects on the development of early childhood caries in a population with low socioeconomic status: a longitudinal study. Caries Res. 2006; 40(4):296–302. doi: 10.1159/000093188

    Uribe S. Early childhood caries--risk factors. Evid Based Dent. 2009;10(2):37–8. doi: 10.1038/sj.ebd.6400642

    Prasad MK, Laouina S, El Alloussi M, Dollfus H, Bloch-Zupan A. Amelogenesis Imperfecta: 1 Family, 2 Phenotypes, and 2 Mutated Genes. J Dent Res. 2016; 95(13):1457–63. doi: 10.1177/0022034516663200

    Simancas-Escorcia V, Guarapo AEN, Camargo MGA de. Genes involucrados en la amelogénesis imperfecta. Parte I. Rev Fac Odontol Univ Antioq. 2018; 30(1). doi: http:// dx.doi.org /10.17533/udea.rfo.v30n1a10

    Nalbant D, Youn H, Nalbant SI, Sharma S, Cobos E, Beale EG, et al. FAM20: an evolutionarily conserved family of secreted proteins expressed in hematopoietic cells. BMC Genomics. 2005; 6:11. doi: 10.1186/1471-2164-6-11

    Cui J, Zhu Q, Zhang H, Cianfrocco MA, Leschziner AE, Dixon JE, et al. Structure of Fam20A reveals a pseudokinase featuring a unique disulfide pattern and inverted ATP-binding. Elife; 2017 22;6. doi: 10.7554/eLife.23990

    Ohyama Y, Lin J-H, Govitvattana N, Lin I-P, Venkitapathi S, Alamoudi A, et al. FAM20A binds to and regulates FAM20C localization. Sci Rep. 2016 13;6:27784. doi: 10.1038/srep27784

    Tagliabracci VS, Engel JL, Wen J, Wiley SE, Worby CA, Kinch LN, et al. Secreted kina-se phosphorylates extracellular proteins that regulate biomineralization. Science; 2012; 336(6085):1150–3. doi: 10.1126/science.1217817

    Lignon G, Beres F, Quentric M, Rouzière S, Weil R, De La Dure-Molla M, et al. FAM20A Gene Mutation: Amelogenesis or Ectopic Mineralization? Front Physiol. 2017; 8:267. doi: 10.3389/fphys.2017.00267

    Witkop CJ. Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revi-sited: problems in classification. J Oral Pathol. 1988; 17(9–10):547–53. doi: 10.1111/j.1600-0714.1988.tb01332.x

    Simancas-Escorcia V, Berdal A, Díaz-Caballero A. Caracterización fenotípica del síndrome amelogénesis imperfecta–nefrocalcinosis: una revisión. Duazary. 2019; 16(1):129 -143. doi: 1021676/2389783X2531

    De la Dure-Molla M, Quentric M, Yamaguti PM, Acevedo A-C, Mighell AJ, Vikkula M, et al. Pathognomonic oral profile of Enamel Renal Syndrome (ERS) caused by recessive FAM20A mutations. Orphanet J Rare Dis. 2014;9:84. doi: 10.1186/1750-1172-9-84.

    Wrong O. Nephrocalcinosis. 4 Davison AM. Oxford UOU. Oxford University Press; 2005.

    Al-Bderat JT, Mardinie RI, Salaita GM, Al-Bderat AT, Farrah MK. Nephrocalcinosis among chil-dren at king hussein medical center: Causes and outcome. Saudi J Kidney Dis Transpl. 2017; 28(5):1064–8. doi: 10.4103/1319-2442.215138

    Li Q, Chou DW, Price TP, Sundberg JP, Uitto J. Genetic modulation of nephrocalcinosis in mouse models of ectopic mineralization: the Abcc6 tm1Jfk and Enpp1 asj mutant mice. Laboratory Investigation. 2014; 94(6):623–32. doi: 10.1038/labinvest.2014.52

    Ogbureke KUE, Fisher LW. Renal expression of SIBLING proteins and their part-ner matrix metalloproteinases (MMPs). Kidney International. 2005; 68(1):155–66. doi: 10.1111/j.1523-1755.2005.00389.x

    Simpson MA, Hsu R, Keir LS, Hao J, Sivapalan G, Ernst LM, et al. Mutations in FAM20C are associated with lethal osteosclerotic bone dysplasia (Raine syndrome), highlighting a crucial molecule in bone development. Am J Hum Genet. 2007; 81(5):906–12. doi: 10.1086/522240

    Oya K, Ishida K, Nishida T, Sato S, Kishino M, Hirose K, et al. Immunohistochemical analy-sis of dentin matrix protein 1 (Dmp1) phosphorylation by Fam20C in bone: implications for the induction of biomineralization. Histochem Cell Biol. 2017;147(3):341–51. doi: 10.1007/s00418-016-1490-z

    Acevedo AC, Poulter JA, Alves PG, de Lima CL, Castro LC, Yamaguti PM, et al. Variability of systemic and oro-dental phenotype in two families with non-lethal Raine syndrome with FAM20C mutations. BMC Med Genet. 2015;16:8. doi: 10.1186/s12881-015-0154-5

    Tagliabracci VS, Wiley SE, Guo X, Kinch LN, Durrant E, Wen J, et al. A Single Kinase Generates the Majority of the Secreted Phosphoproteome. Cell. 2015; 161(7):1619–32. doi: 10.1016/j.cell.2015.05.028

    Hao J, Narayanan K, Muni T, Ramachandran A, George A. Dentin matrix protein 4, a novel secretory calcium-binding protein that modulates odontoblast differentiation. J Biol Chem. 2007; 282(21):15357–65. doi: 10.1074/jbc.M701547200

    Chan H-C, Mai L, Oikonomopoulou A, Chan HL, Richardson AS, Wang S-K, et al. Altered ena-melin phosphorylation site causes amelogenesis imperfecta. J Dent Res. 2010; 89(7):695–9. doi: 10.1177/0022034510365662

    Elalaoui SC, Al-Sheqaih N, Ratbi I, Urquhart JE, O’Sullivan J, Bhaskar S, et al. Non lethal Raine syndrome and differential diagnosis. European Journal of Medical Genetics. 2016; 59(11):577–83. doi: 10.1016/j.ejmg.2016.09.018

    Takeyari S, Yamamoto T, Kinoshita Y, Fukumoto S, Glorieux FH, Michigami T, et al. Hypophosphatemic osteomalacia and bone sclerosis caused by a novel homozygous muta-tion of the FAM20C gene in an elderly man with a mild variant of Raine syndrome. Bone. 2014; 67:56–62. doi: 10.1016/j.bone.2014.06.026

    Devuyst O. Salt wasting and blood pressure. Nature Genetics. 2008; 40(5):495–6. doi: 10.1038/ng0508-495

    Fahlke C, Fischer M. Physiology and pathophysiology of ClC-K/barttin channels. Front Physiol.2010; 1:155. doi: 10.3389/fphys.2010.00155

    Hebert SC. Bartter syndrome. Curr Opin Nephrol Hypertens. 2003; 12(5):527–32. doi: 10.1097/00041552-200309000-00008

    Brochard K, Boyer O, Blanchard A, Loirat C, Niaudet P, Macher M-A, et al. Phenotype-genotype correlation in antenatal and neonatal variants of Bartter syndrome. Nephrol Dial Transplant. 2009; 24(5):1455–64. doi: 10.1093/ndt/gfn689

    Briet M, Vargas-Poussou R, Lourdel S, Houillier P, Blanchard A. How Bartter’s and Gitelman’s syndromes, and Dent’s disease have provided important insights into the function of three renal chloride channels: ClC-Ka/b and ClC-5. Nephron Physiol. 2006; 103(1): 7-13. doi: 10.1159/000090218

    Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotrans-porter NKCC2. Nat Genet. 1996; 13(2):183–8. doi: 10.1038/ng0696-183

    Martelli-Júnior H, Ferreira SP, Pereira PCB, Coletta RD, de Aquino SN, Miranda DM, et al. Typical Features of Amelogenesis Imperfecta in Two Patients with Bartter’s Syndrome. Nephron Extra. 2012; 2(1):319–25. doi: 10.1159/000345801

    Kumar ACV, Alekya V, Krishna MSVV, Alekya K, Aruna M, Reddy MHK, et al. Association of Amelogenesis Imperfecta and Bartter’s Syndrome. Indian J Nephrol. 2017; 27(5):399–401. doi: 10.4103/ijn.IJN_203_16

    Rodríguez Soriano J. Renal tubular acidosis: the clinical entity. J Am Soc Nephrol. 2002; 13(8):2160–70. doi: 10.1097/01.asn.0000023430.92674.e5

    Batlle D, Haque SK. Genetic causes and mechanisms of distal renal tubular acidosis. Nephrol Dial Transplant. 2012; 27(10):3691–704. doi: 10.1093/ndt/gfs442

    Ravi P, Ekambaranath TS, Arasi SE, Fernando E. Distal renal tubular acidosis and ame-logenesis imperfecta: A rare association. Indian J Nephrol. 2013; 23(6):452–5. doi: 10. 4103/0971-4065.120345

    Misgar RA, Hassan Z, Wani AI, Bashir MI. Amelogenesis Imperfecta with Distal Renal Tubular Acidosis: A Novel Syndrome? Indian J Nephrol. 2017; 27(3):225–7. doi: 10.4103/0971-4065.202826

    Elizabeth J, Lakshmi Priya E, Umadevi KMR, Ranganathan K. Amelogenesis imperfec-ta with renal disease--a report of two cases. J Oral Pathol Med. 2007; 36(10):625–8. doi: 10.1111/j.1600-0714.2007.00615.x

    Vall-Palomar M, Arévalo J, Ariceta G, Meseguer A. Establishment of urinary exosome-like vesi-cles isolation protocol for FHHNC patients and evaluation of different exosomal RNA extrac-tion methods. J Transl Med. 2018; 16(1):278. doi: 10.1186/s12967-018-1651-z

    Konrad M, Hou J, Weber S, Dötsch J, Kari JA, Seeman T, et al. CLDN16 genotype predicts re-nal decline in familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol. 2008; 19(1):171–81. doi: 10.1681/ASN.2007060709

    Alparslan C, Öncel EP, Akbay S, Alaygut D, Mutlubaş F, Tatlı M, et al. A novel homozygous W99G mutation in CLDN-16 gene causing familial hypomagnesemic hypercalciuric nephrocalcino-sis in Turkish siblings. Turk J Pediatr. 2018; 60(1):76–80. doi: 10.24953/turkjped.2018.01.011

    Cetrullo N, Guadagni MG, Piana G. Two cases of familial hypomagnesemia with hypercalciu-ria and nephrocalcinosis: dental findings. Eur J Paediatr Dent. 2006; 7(3):146–50. doi: 10.1038/ki.1995.199

    Bardet C, Courson F, Wu Y, Khaddam M, Salmon B, Ribes S, et al. Claudin-16 Deficiency Impairs Tight Junction Function in Ameloblasts, Leading to Abnormal Enamel Formation. J Bone Miner Res. 2016; 31(3):498–513. doi: 10.1002/jbmr.2726

    Yamaguti PM, Neves F de AR, Hotton D, Bardet C, de La Dure-Molla M, Castro LC, et al. Amelogenesis imperfecta in familial hypomagnesaemia and hypercalciuria with nephro-calcinosis caused by CLDN19 gene mutations. J Med Genet. 2017; 54(1):26–37. doi: 10.1136/jmedgenet-2016-103956

    Hunter L, Addy LA, Knox J, Drage N. Is Amelogenesis Imperfecta an indication for renal exa-mination? Int J Paediatr Dent. 2007; 17: 62-5. doi: 10.1111/j.1365-263X.2006.00782.x

    Josephsen K, Takano Y, Frische S, Praetorius J, Nielsen S, Aoba T, et al. Ion transporters in secretory and cyclically modulating ameloblasts: a new hypothesis for cellular control of preeruptive enamel maturation. Am J Physiol, Cell Physiol. 2010; 299(6):C1299-1307. doi: 10.1152/ajpcell.00218.2010

    MÉTRICAS
    VISTAS DEL ARTÍCULO: 931
    VISTAS DEL PDF: 714
    Métricas
    Cargando métricas ...
    https://plu.mx/plum/a/?doi=10.16925/2357-4607.2021.02.05