• Research Articles

    Thermogravimetric and calorimetric evaluation of pellets obtained from the biomass of Coffea arabica L.

    Vol. 21 No. 1 (2025)
    Published: 2025-07-24
    Germán Fabián Escobar Fiesco
    Universidad Surcolombiana
    Claudia Patricia Ortiz
    Corporación Universitaria Minuto de Dios
    Rossember Edén Cárdenas Torres
    Fundación Universidad de América
    Daniel Ricardo Delgado
    Politécnico Grancolombiano

    Introduction: This article presents the results of the research titled Dendroenergetic Analysis of Agricultural and Forest Biomass, conducted in 2024 by Universidad América in collaboration with Fundación Universitaria Minuto de Dios (UNIMINUTO) and Politécnico Grancolombiano.
    Problem: Colombia is one of the world’s largest coffee producers, yet the biomass generated beyond the coffee fruit is underutilized. This biomass represents a promising source of energy.
    Objective: To conduct a dendroenergetic analysis of Coffea arabica L. biomass pellets by evaluating five key factors: moisture content (%), ash content (%), volatile matter, thermogravimetric properties, and calorific value.
    Methodology: The calorific value was evaluated using a CAL3K calorimeter, TGA 8000 thermogravimetric analyzer, the percentage of moisture was determined using a RADWAG moisture balance (±0.0001 g), and the percentage of ash and volatiles was determined using a RADWAG analytical balance (±0.0001 g).
    Results: The study found promising energetic properties across samples. Coal derived from the biomass showed particularly high calorific value, low volatile matter, and good resistance to moisture. These findings indicate that Coffea arabica L. biomass is a strong candidate for producing densified biofuels with high energy output.
    Conclusion: Given the abundant availability of Coffea arabica L. biomass in Colombia and the favorable calorific characteristics of both wood and pyrolysis charcoal, this biomass is an ideal raw material for developing sustainable, high-energy biofuels.
    Originality: This research provides novel dendroenergetic data on Coffea arabica L. biomass under specific conditions.
    Limitations: The analysis was limited to a single coffee variety.

    Keywords: Forest biomass, biochar, heating power, renewable energy

    How to Cite

    [1]
    G. F. . Escobar Fiesco, C. P. Ortiz, R. E. . Cardenas Torres, and D. R. . Delgado, “Thermogravimetric and calorimetric evaluation of pellets obtained from the biomass of Coffea arabica L”., ing. Solidar, vol. 21, no. 1, pp. 1–16, Jul. 2025, doi: 10.16925/2357-6014.2025.01.04.

    [1] G. Bahamón, “Informe del Gerente,” Bogotá, Dec. 2024. Accessed: Mar. 24, 2025. [Online]. Available: https://federaciondecafeteros.org/app/uploads/2024/12/IG-2024-93-CNC_Digital.pdf

    [2] A. Miguel and M. Berrocal, “Evite pérdidas económicas al renovar por zoqueo: Resiembre los sitios perdidos,” Avances técnicos CENICAFE, pp. 1–4, Aug. 2010. doi: https://doi.org/10.38141/10779/0398

    [3] A. J. Ragauskas et al., “The path forward for biofuels and biomaterials,” Science, vol. 311, no. 5760, pp. 484–489, Jan. 2006. doi: https://doi.org/10.1126/science.1114736

    [4] K. T. Malladi and T. Sowlati, “Impact of carbon pricing policies on the cost and emission of the biomass supply chain: Optimization models and a case study,” Applied Energy, vol. 267, pp. 1–19, Jun. 2020. doi: https://doi.org/10.1016/j.apenergy.2020.115069

    [5] L. Duncanson et al., “Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California,” Remote Sensing of Environment, vol. 242, pp. 1–16, Jun. 2020. doi: https://doi.org/10.1016/j.rse.2020.111779

    [6] M. Kashanian, M. S. Pishvaee, and H. Sahebi, “Sustainable biomass portfolio sourcing plan using multi-stage stochastic programming,” Energy, vol. 204, pp. 1–14, Aug. 2020. doi: https://doi.org/10.1016/j.energy.2020.117923

    [7] L. Wu et al., “The composition, energy, and carbon stability characteristics of biochars derived from thermo-conversion of biomass in air-limitation, CO₂, and N₂ at different temperatures,” Waste Management, vol. 141, pp. 136–146, Mar. 2022. doi: https://doi.org/10.1016/j.wasman.2022.01.038

    [8] K. Difs, E. Wetterlund, L. Trygg, and M. Söderström, “Biomass gasification opportunities in a district heating system,” Biomass and Bioenergy, vol. 34, no. 5, pp. 637–651, May 2010. doi: https://doi.org/10.1016/j.biombioe.2010.01.007

    [9] S. Zhang, M. Asadullah, L. Dong, H. L. Tay, and C. Z. Li, “An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Part II: Tar reforming using char as a catalyst or as a catalyst support,” Fuel, vol. 112, pp. 646–653, Oct. 2013. doi: https://doi.org/10.1016/j.fuel.2013.03.015

    [10] J. Schneider, C. Grube, A. Herrmann, and S. Rönsch, “Atmospheric entrained-flow gasification of biomass and lignite for decentralized applications,” Fuel Processing Technology, vol. 152, pp. 72–82, Nov. 2016. doi: https://doi.org/10.1016/j.fuproc.2016.05.047

    [11] C. Serrano, E. Monedero, M. Lapuerta, and H. Portero, “Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets,” Fuel Processing Technology, vol. 92, no. 3, pp. 699–706, Mar. 2011. doi: https://doi.org/10.1016/j.fuproc.2010.11.031

    [12] N. Mišljenović et al., “Physical quality and surface hydration properties of wood-based pellets blended with waste vegetable oil,” Fuel Processing Technology, vol. 134, pp. 214–222, Jun. 2015. doi: https://doi.org/10.1016/j.fuproc.2015.01.037

    [13] P. K. Keshav et al., “Bioconversion of alkali delignified cotton stalk using two-stage dilute acid hydrolysis and fermentation of detoxified hydrolysate into ethanol,” Industrial Crops and Products, vol. 91, pp. 323–331, Nov. 2016. doi: https://doi.org/10.1016/j.indcrop.2016.07.031

    [14] S. Brethauer and M. H. Studer, “Biochemical conversion processes of lignocellulosic biomass to fuels and chemicals – A review,” Chimia, vol. 69, no. 10, p. 572, Oct. 2015. doi: https://doi.org/10.2533/chimia.2015.572

    [15] K. Promdee and T. Vitidsant, “Synthesis of char, bio-oil and gases using a screw feeder pyrolysis reactor,” Coke and Chemistry, vol. 56, no. 12, pp. 466–469, Dec. 2013. doi: https://doi.org/10.3103/s1068364x13120107

    [16] H. Sutcu, “The examination of liquid, solid, and gas products obtained by the pyrolysis of three different peat and reed samples,” Journal of Energy Resources Technology, vol. 130, no. 2, pp. 1–4, Jun. 2008. doi: https://doi.org/10.1115/1.2906118

    [17] G. Soto and M. Núñez, “Fabricación de pellets de carbonilla, usando aserrín de Pinus radiata (D. Don), como material aglomerante,” Maderas. Ciencia y Tecnología, vol. 10, no. 2, pp. 129–138, Dec. 2014. Accessed: Mar. 24, 2025. [Online]. Available: https://revistas.ubiobio.cl/index.php/MCT/article/view/1396

    [18] R. Tabakaev, I. Shanenkov, A. Kazakov, and A. Zavorin, “Thermal processing of biomass into high-calorific solid composite fuel,” Journal of Analytical and Applied Pyrolysis, vol. 124, pp. 94–102, Mar. 2017. doi: https://doi.org/10.1016/j.jaap.2017.02.016

    [19] Z. Liu and G. Han, “Production of solid fuel biochar from waste biomass by low temperature pyrolysis,” Fuel, vol. 158, pp. 159–165, Oct. 2015. doi: https://doi.org/10.1016/j.fuel.2015.05.032

    [20] D. Mohan, C. U. Pittman, and P. H. Steele, “Pyrolysis of wood/biomass for bio-oil: A critical review,” Energy and Fuels, vol. 20, no. 3, pp. 848–889, May 2006. doi: https://doi.org/10.1021/ef0502397

    [21] S. Xiu and A. Shahbazi, “Bio-oil production and upgrading research: A review,” Renewable and Sustainable Energy Reviews, vol. 16, no. 7, pp. 4406–4414, Sep. 2012. doi: https://doi.org/10.1016/j.rser.2012.04.028

    [22] Z. A. B. Z. Alauddin, P. Lahijani, M. Mohammadi, and A. R. Mohamed, “Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review,” Renewable and Sustainable Energy Reviews, vol. 14, no. 9, pp. 2852–2862, Dec. 2010. doi: https://doi.org/10.1016/j.rser.2010.07.026

    [23] S. Al Arni, “Comparison of slow and fast pyrolysis for converting biomass into fuel,” Renewable Energy, vol. 124, pp. 197–201, Aug. 2018. doi: https://doi.org/10.1016/j.renene.2017.04.060

    [24] P. Pineda Gómez et al., “Papel del agua en la gelatinización del almidón de maíz: Estudio por calorimetría diferencial de barrido,” Ingeniería y Ciencia, vol. 6, no. 11, pp. 129–141, 2010. Accessed: Mar. 24, 2025. [Online]. Available: http://www.redalyc.org/articulo.oa?id=83516540008

    [25] H. Yılmaz, M. Çanakcı, M. Topakcı, and D. Karayel, “The effect of raw material moisture and particle size on agri-pellet production parameters and physical properties: A case study for greenhouse melon residues,” Biomass and Bioenergy, vol. 150, pp. 1–8, Jul. 2021. doi: https://doi.org/10.1016/j.biombioe.2021.106125

    [26] K. Raveendran, A. Ganesh, and K. C. Khilar, “Pyrolysis characteristics of biomass and biomass components,” Fuel, vol. 75, no. 8, pp. 987–998, Jun. 1996. doi: https://doi.org/10.1016/0016-2361(96)00030-0

    [27] M. Q. G. Enriquez, R. Velasco, and A. Fernández, “Caracterización de almidones de yuca nativos y modificados para la elaboración de empaques biodegradables,” Biotecnología en el Sector Agropecuario y Agroindustrial, vol. 11, no. 1, pp. 21–30, Nov. 2013. Accessed: Mar. 24, 2025. [Online]. Available: https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1222

    MÉTRICAS
    ARTICLE VIEWS: 184
    PDF VIEWS: 241
    Metrics
    Metrics Loading ...
    https://plu.mx/plum/a/?doi=10.16925/2357-6014.2025.01.04