• Research Articles

    Synergy of industry 4.0 technologies in the operational safety management system for integration into enterprise management

    Vol. 21 No. 1 (2025)
    Published: 2025-07-24
    Samir Alexander Caicedo Tapias

    Introduction: This paper presents research on the integration of Industry 4.0 technologies into Safety Management Systems (SMS) across various industrial sectors, conducted between 2024 and 2025. The study examines how emerging technologies enhance SMS by improving operational efficiency, risk management, and decision-making in regulated industries such as aerospace, maritime, and energy.

    Problem: The integration of Industry 4.0 technologies into SMS poses a challenge in business management. Despite technological advancements, the relationship between these digital tools and safety management processes remains underexplored in the literature, limiting their adoption in strategic sectors such as naval, aerospace, mining-energy, nuclear, hydrocarbons, and other key industries.

    Objective: This study aims to identify the synergy between Industry 4.0 technologies and Safety Management Systems (SMS) to evaluate their integration into business management across various industrial sectors. It seeks to assess how these technologies can enhance operational efficiency, improve information traceability, and optimize data-driven decision-making.

    Methodology: The research follows a theoretical approach based on a systematic review of scientific and technical literature. An empirical analysis was conducted in industrial sectors where SMS applications are subject to strict regulations and access restrictions due to confidentiality and patent protection. The study considers recognized regulatory frameworks and methodologies, including Integrated Management Systems (IMS), Six Sigma, 5S and 6S methodologies, ISO 9001, and additional strategies related to continuous improvement and industrial process optimization.

    Conclusion: The findings indicate that the convergence of Industry 4.0 technologies with SMS presents significant opportunities for process optimization, data-driven decision-making, and operational risk mitigation. However, the lack of previous studies on this synergy, coupled with restrictions imposed by patents and industrial confidentiality, highlights the need for further research into its applicability across different sectors.

    Originality: Industry 4.0 technologies are still emerging in the field of safety management, resulting in limited availability of technical literature. This challenge is further compounded by confidentiality restrictions on industrial processes and data protection measures within organizations. This study provides a novel perspective by analyzing the inherent synergy between these technologies and SMS, enabling the exploration of new methodologies for risk management optimization, data-driven decision-making, and operational efficiency in strategic sectors.

    Limitations: The analysis is constrained by limited access to technical and operational data due to patent protection and industrial confidentiality in various organizations’ processes. Therefore, the study is conducted at a theoretical level, relying on a literature review of specialized sources without direct access to real-world industrial implementations. 

    Keywords: Industry 4.0, Digital Twin, Safety Management System, Hazard and Operability, Layer of Protection Analysis, Hazard Identification

    How to Cite

    [1]
    S. A. . Caicedo Tapias, “Synergy of industry 4.0 technologies in the operational safety management system for integration into enterprise management”, ing. Solidar, vol. 21, no. 1, pp. 1–23, Jul. 2025, doi: 10.16925/2357-6014.2025.01.02.

    [1] R. J. Gómez, E. Mendoza, and J. Lifa, Factores humanos y seguridad operacional. Buenos Aires, Argentina: Tecnibook Ediciones, 2015. ISBN: 978-987-686-164-9.

    [2] O. R. Zulueta Torres, “Propuesta de mejoras a la seguridad operacional de los procesos de destilación atmosférica de la Refinería de Petróleo Camilo Cienfuegos,” Tesis, Matanzas, Cuba, 2012. [Online]. Available: https://rein.umcc.cu/handle/123456789/389

    [3] U. Rojas and J. Carelia, “Diseño del sistema de transporte para el despacho de metanol, MTBE E ISO-Octano a través del Muelle Petroquímico de Jose,” Tesis, Caracas, Venezuela, 2006. [Online]. Available: http://hdl.handle.net/10872/715

    [4] N. Siddiqui, A. Nandan, M. Sharma, and A. Srivastava, “Risk management techniques HAZOP & HAZID study,” Int. J. Occup. Health Saf. Fire Environ. Allied Sci., vol. 1, no. 1, pp. 5–8, Jul.–Sep. 2014. [Online]. Available: https://www.researchgate.net/publication/319979143_Risk_Management_Techniques_HAZOP_HAZID_Study

    [5] A. J. Penelas and J. C. M. Pires, “HAZOP analysis in terms of safety operations processes for oil production units: A case study,” Appl. Sci., vol. 11, no. 21, Art. no. 10210, 2021. https://doi.org/10.3390/app112110210

    [6] “Is HAZOP a Reliable Tool? What Improvements are Possible?” Korean Journal of Gas, vol. 22, no. 2, pp. 1–7, 2018. https://doi.org/10.7842/kigas.2018.22.2.1

    [7] N. G. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety. Cambridge, MA, USA: MIT Press, 2011. https://doi.org/10.7551/mitpress/8179.001.0001

    [8] M. A. Cuba Moran, “El uso de Gemelos Digitales y Realidad Virtual Como Actualización de sistemas de control manual,” Tesis de Licenciatura, Universidad Autónoma de Querétaro, Querétaro, México. [Online]. Available: https://ri-ng.uaq.mx/handle/123456789/11363

    [9] K. Sharma and R. Lodha, “Frequent Crisis and Modern Trends Associated with HAZOP Study in Plants and Industrial Units,” Int. J. Sci. Res. Sci. Technol., vol. 7, no. 6, pp. 132–138, 2020. https://doi.org/10.32628/IJSRST20768

    [10] O. M. Velásquez Barrios, “Diseño de sistema de gestión de seguridad industrial en procesos industriales para evitar eventos catastróficos en una línea galvanizadora de lámina de inmersión en caliente, mediante la administración seguridad de los procesos (ASP),” Tesis, Universidad de San Carlos de Guatemala, Guatemala, 2021. [Online]. Available: http://www.repositorio.usac.edu.gt/id/eprint/16393

    [11] F.-F. Salimi, A. A. Safavi, L. Urbas, and F. Salimi, A New Approach to HAZOP of Complex Chemical Processes. Amsterdam, Netherlands: Elsevier, 2023. ISBN: 978-0-323-90562-6. eBook ISBN: 978-0-323-90684-5.

    [12] T. Suzuki, Y. Izato, and A. Miyake, “Identification of accident scenarios caused by internal factors using HAZOP to assess an organic hydride hydrogen refueling station involving methylcyclohexane,” J. Loss Prev. Process Ind., vol. 70, 2021. https://doi.org/10.1016/j.jlp.2021.104479

    [13] R. Lauri et al., “HAZOP Analysis of a Bioprocess for Polyhydroxyalkanoate (PHA) Production from Organic Waste: Part A,” Fermentation, vol. 9, no. 2, 2023. https://doi.org/10.3390/fermentation9020099

    [14] R. A. Viegas, F. A. S. Mota, A. P. C. S. Costa, and F. F. P. dos Santos, “A multi-criteria-based hazard and operability analysis for process safety,” Process Saf. Environ. Prot., vol. 145, pp. 415–426, 2020. https://doi.org/10.1016/j.psep.2020.07.034

    [15] N. Gómez Larrakoetxea, “Estudio de uso de nuevos algoritmos de Edge Computing para la generación eficiente de gemelos digitales en entornos productivos industriales,” Tesis Doctoral, Universidad de Deusto, Bilbao, España, 2023. [Online]. Available: https://portalinvestigacion.udc.gal/documentos/6578aee922874a7dd06db968

    [16] D. Piromalis and A. Kantaros, “Digital Twins in the Automotive Industry: The Road toward Physical-Digital Convergence,” Appl. Syst. Innov., vol. 5, no. 4, 2022. https://doi.org/10.3390/asi5040065

    [17] D. Orive, A. López, E. Estévez, A. Orive, and M. Marcos, “Desarrollo de gemelos digitales para la simulación e integración de activos de fabricación en la industria 4.0,” in XLII Jornadas de Automática: Libro de Actas, Castelló: Universidad de Coruña, 2021, pp. 709–716. https://doi.org/10.17979/spudc.9788497498043.709

    [18] F. Rozo-García, “Revisión de las tecnologías presentes en la industria 4.0,” Rev. UIS Ingenierías, vol. 19, no. 2, pp. 177–191, 2020. https://doi.org/10.18273/revuin.v19n2-2020019

    [19] R. Rosati et al., “From knowledge-based to big data analytic model: a novel IoT and machine learning based decision support system for predictive maintenance in Industry 4.0,” J. Intell. Manuf., 2023. https://doi.org/10.1007/s10845-022-01960-x

    [20] H. Jaidka, N. Sharma, and R. Singh, “Evolution of IoT to IIoT: Applications & Challenges,” in Proc. Int. Conf. Innov. Comput. Commun. (ICICC), May 2022. https://dx.doi.org/10.2139/ssrn.3603739

    [21] J. Lacayo Mendoza and J. L. Ortiz Jaimes, “Caracterización de los modelos de administración de la seguridad de procesos. Sector petroquímico de Cartagena: Caso (Cabot Colombiana y Ecopetrol refinería de Cartagena),” Tesis de Maestría, Cartagena, Colombia, 2015. [Online]. Available: https://hdl.handle.net/20.500.12585/3648

    [22] C. E. Moreno Poma, V. Mora Sánchez, and A. Pacheco Molina, “La comunicación empresarial como herramienta de apoyo en la gestión y desarrollo de las empresas,” Rev. Metropolitana Cienc. Apl., vol. 4, no. 1, pp. 115–121, 2021. [Online]. Available: https://www.redalyc.org/articulo.oa?id=721778108015

    [23] L. Zou, Z. Wang, J. Hu, Y. Liu, and X. Liu, “Communication-protocol-based analysis and synthesis of networked systems: Progress, prospects and challenges,” Int. J. Syst. Sci., vol. 52, no. 14, pp. 3013–3034, 2021. https://doi.org/10.1080/00207721.2021.1917721

    [24] W. Chen, J. Hu, X. Yu, D. Chen, and Z. Wu, “Robust Fault Detection for Uncertain Delayed Systems With Measurement Outliers Under Stochastic Communication Protocol,” IEEE Trans. Signal Inf. Process. Netw., vol. 8, pp. 684–701, 2022. https://doi.org/10.1109/TSIPN.2022.3192650

    [25] T. Dimakis et al., “GreenLoRaWAN: An energy efficient and resilient LoRaWAN communication protocol,” in Proc. 2022 IEEE Symp. Comput. Commun. (ISCC), Rhodes, Greece, 2022, pp. 1–7. https://doi.org/10.1109/ISCC55528.2022.9912972

    [26] N. Das and G. Paul, “Cryptanalysis of quantum secure direct communication protocol with mutual authentication based on single photons and Bell states,” EPL (Europhys. Lett.), vol. 139, no. 2, 2022. https://doi.org/10.1209/0295-5075/ac2246

    [27] A. Jain and S. Bhullar, “Network performance evaluation of smart distribution systems using smart meters with TCP/IP communication protocol,” Energy Reports, 2022. https://doi.org/10.1016/j.egyr.2022.05.108

    [28] N. Zhukova and A. Subbotin, “Communication Protocol Between Embedded Computers and Fog Computing Environment for Image Processing,” in Proc. 11th Mediterranean Conf. Embedded Computing (MECO), Budva, Montenegro, 2022, pp. 01–06. https://doi.org/10.1109/MECO55406.2022.9797225

    [29] M. Yazdi, F. Khan, R. Abbassi and R. Rusli, “Improved DEMATEL methodology for effective safety management decision-making,” Safety Science, vol. 120, 2020. https://doi.org/10.1016/j.ssci.2020.104705

    [30] B. Wang, “Safety intelligence as an essential perspective for safety management in the era of Safety 4.0: From a theoretical to a practical framework,” Process Safety and Environmental Protection, vol. 148, pp. 189–199, 2021. https://doi.org/10.1016/j.psep.2020.10.008

    [31] D. T. Kuok Ho, “A Case Study of Asset Integrity and Process Safety Management of Major Oil and Gas Companies in Malaysia,” J. Eng. Res. Rep., vol. 20, pp. 6–19, 2021. http://dx.doi.org/10.9734/JERR/2021/v20i217260

    [32] V. Hajipour and A. Gharaei, “An integrated process-based HSE management system: A case study,” Safety Science, vol. 133, 2020. http://dx.doi.org/10.1016/j.ssci.2020.104993

    [33] S. W. Nasution, S. Aprilia and C. N. Ginting, “The Relationship Between Inhibiting Factors and the Implementation of the Occupational Safety and Health Management System,” Jurnal Penelitian Pendidikan IPA, vol. 9, Special Issue, 2023. https://doi.org/10.29303/jppipa.v9iSpecialIssue.5989

    [34] M. X. Álava Rosadoo, M. M. Sandoval Cují and F. E. Triana Litardo, “El control interno como herramienta eficaz para la administración de las PyMES: revisión sistemática,” Latam, vol. 4, no. 1, 2023. https://doi.org/10.56712/latam.v4i1.536

    [35] C. Correa-Jullian, M. Ramos, A. Mosleh and J. Ma, “Operational safety hazard identification methodology for automated driving systems fleets,” J. Risk and Reliability, 2024. https://doi.org/10.1177/1748006X241233863

    [36] R. G. Pirbalouti, B. Behnam and M. Karimi Dehkordi, “A risk-based approach to identify safety-critical equipment in process industries,” Results in Engineering, vol. 20, 2023. https://doi.org/10.1016/j.rineng.2023.101448

    [37] J. I. Single, Automation of the Hazard and Operability Method Using Ontology-based Scenario Causation Models, 2022. https://doi.org/10.26204/KLUEDO/6741

    [38] M. Omidvar, E. Zarei, B. Ramavandi and M. Yazdi, “Fuzzy Bow-Tie Analysis: Concepts, Review, and Application,” in Linguistic Methods Under Fuzzy Information in System Safety and Reliability Analysis, M. Yazdi, Ed. Cham: Springer, 2022, vol. 414, pp. 57–87. https://doi.org/10.1007/978-3-030-93352-4_3

    [39] G. Barona López and L. E. Velasteguí, “Automatización de procesos industriales mediante Industria 4.0,” AlfaPublicaciones, vol. 3, no. 3.1, pp. 98–115, 2021. https://doi.org/10.33262/ap.v3i3.1.77

    [40] M. Zapata, L. Topón-Visarrea and E. Tipán, Fundamentos de Automatización y Redes Industriales. Quito, Ecuador: Editorial Universidad Tecnológica Indoamérica, 2021. [Online]. Available: http://repositorio.uti.edu.ec//handle/123456789/2226

    [41] R. F. Da Silva, A. H. d. A. Melani, M. A. d. C. Michalski and G. F. M. de Souza, “Reliability and Risk Centered Maintenance: A Novel Method for Supporting Maintenance Management,” Applied Sciences, vol. 13, no. 19, p. 10605, 2023. https://doi.org/10.3390/app131910605

    [42] M. S. Andrango Alobuela and F. R. Arroyo Morocho, “Industria 4.0 y economía circular: revisión de la literatura y recomendaciones para una industria sustentable en Ecuador,” Ciencia Latina Revista Científica Multidisciplinar, vol. 5, no. 6, pp. 14623–14638, 2022. https://doi.org/10.37811/cl_rcm.v5i6.1422

    [43] J. Corrales Bonilla, N. Ribeiro and D. R. Gomes, “Las competencias exigidas a los trabajadores de la Industria 4.0: Cambios en la gestión de personas,” Cuadernos de Relaciones Laborales, vol. 40, no. 1, pp. 161–184, 2022. https://doi.org/10.5209/crla.72383

    [44] H. P. Segarra Jaime, M. Ordoñez Guartazaca and D. L. Ortega, “El talento humano y su evolución en la industria 4.0,” Revista Universidad De Guayaquil, vol. 131, no. 2, pp. 1–18, 2020. https://doi.org/10.53591/rug.v131i2.1349

    [45] J. F. Ramírez Pérez, V. G. López Torres, S. A. Hernández Castillo and M. Morejón Valdés, “Lean six sigma e industria 4.0, una revisión desde la administración de operaciones para la mejora continua de las organizaciones,” UNESUM - Ciencias. Revista Científica Multidisciplinaria, vol. 5, no. 4, pp. 151–168, 2021. https://doi.org/10.47230/unesum-ciencias.v5.n4.2021.584

    [46] D. F. Orellana-Daube, “El efecto global de la actual revolución tecnológica 4ª revolución industrial y la industria 4.0 en acción,” Revista GEON, vol. 7, no. 2, pp. 1–24, 2020. https://doi.org/10.22579/23463910.194

    [47] M. Á. L. Pérez, I. B. Piña and G. V. Álvarez, “Diseño de una metodología de mantenimiento predictivo para asegurar procesos de producción de la industria 4.0,” South Florida Journal of Development, vol. 2, no. 1, pp. 1009–1017, 2021. https://doi.org/10.46932/sfjdv2n1-074

    [48] R. Mababu Mukiur, “Análisis de las competencias claves para la industria 4.0: Las competencias para la Industria 4.0,” TECHNO REVIEW. International Technology, Science and Society Review / Revista Internacional De Tecnología, Ciencia Y Sociedad, vol. 12, no. 1, pp. 1–15, 2022. https://doi.org/10.37467/revtechno.v11.4392

    [49] M. Arriagada-Benítez, “Ciencia de Datos: hacia la automatización de las decisiones,” Ingeniare. Revista Chilena de Ingeniería, vol. 28, no. 4, pp. 556–557, 2020. http://dx.doi.org/10.4067/S0718-33052020000400556

    [50] J. Wang, D. Hu, C. Peng, H. Zhi, and L. Wu, “Safety assessment through HAZOP-LOPA-SIL analysis implementation in the DPA demulsifier production process,” Process Safety Progress, 2022. https://doi.org/10.1002/prs.12414

    [51] L. Anato, L. Carrero, G. Brouillard, and C. Morar, “Application and challenges of layers of protection analysis (LOPA) in mining processes: Insights into benefits and limitations,” Process Safety Progress, 2024. https://doi.org/10.1002/prs.12615

    MÉTRICAS
    ARTICLE VIEWS: 407
    PDF VIEWS: 368
    Metrics
    Metrics Loading ...
    https://plu.mx/plum/a/?doi=10.16925/2357-6014.2025.01.02