New Approach and Integration for The Introduction of Dynamic Systems : Methodology, Models, And Relations
Department of Control and Automation Engineering. Technological Faculty. Francisco José de Caldas District University.
email: gerffenson@gmail.com
Department of Control and Automation Engineering. Technological Faculty. Francisco José de Caldas District University.
email: ivan.perilla@hotmail.com
Department of Control and Automation Engineering. Technological Faculty. Francisco José de Caldas District University.
email: aescobard@udistrital.edu.co
Introduction: This article is the result of the research “Analysis of the dynamic systems component of the engineering programs in control and automation and technology in industrial electronics,” developed at the Francisco José de Caldas District University in the years 2022-2023.
Problem: The document addresses the lack of a clear and comprehensive structure in the analysis of linear dynamic systems, as well as the absence of an innovative approach to addressing these topics in traditional courses, which hinders their understanding and application in different disciplines.
Objective: The objective is to present a novel approach to analyzing linear dynamic systems, providing a complete framework of concepts, relationships, and important tools in this analysis, as well as a literature review based on over seventeen years of experience in courses and studies of this kind.
Methodology: A journey of concepts is proposed from signals and systems, through modeling with methods such as black box, white box, gray box, to linear analysis based on examples with calculation of differential equations, state representation, transfer function, and block diagrams.
Results: The document aggregates and articulates all the concepts of dynamic systems, along with the relationships and tools used, offering a more practical and intuitive approach to understanding the material.
Conclusion: The document provides a comprehensive and articulated view of key concepts in the analysis of linear dynamic systems, highlighting an innovative approach that facilitates their understanding. Its main contribution is to aggregate and articulate these concepts, along with the tools and relationships used, to offer a more practical and clear approach for their study.
Originality: The originality lies in proposing a novel and structured approach to analyzing linear dynamic systems, addressing the lack of clarity and completeness in traditional approaches.
Limitations: Although the document proposes a novel approach, it does not delve into specific aspects of some topics covered, which could limit the detailed understanding of certain concepts.
Deepening: The document could delve into the practical application of the proposed concepts and tools in real cases of dynamic systems, as well as into the comparison with traditional approaches to highlight the differences and advantages of the proposed new approach.
[1] E. Maya, Métodos y técnicas de investigación, 5.a ed. UNAM, 2002, pp. 1.
[2] B. C. Kuo y F. Golnaraghi, Automatic Control Systems. McGraw-Hill Education, 2017. Accedido: 1 de septiembre de 2022. [Online]. Available: https://www.accessengineeringlibrary.com/content/book/9781259643835.
[3] N. S. Nise, Control Systems Engineering, 7th ed. Wiley, 2019, pp. 1, doi: https://doi.org/10.1002/9781119399317.
[4] K. Ogata, Ingeniería de Control Moderna. Pearson Educación, 2010. doi: https://doi.org/10.1016/B978-607-32-0810-5.50001-3, pp. 1.
[5] P. N. Paraskevopoulos, Modern Control Engineering. Marcel Dekker Inc, 2001, doi: https://doi.org/10.1201/9781420046049, pp. 1.
[6] J. S. Cañón Moreno, “Un nuevo enfoque de señales y sistemas dinámicos,” Visión Electrónica, 2020. [Online]. Available: https://repository.udistrital.edu.co/handle/11349/24727.
[7] L. L. Hurtado, “Modelamiento Teorico y Modelamiento Empirico de Procesos, Una Síntesis,” Scientia et Technica, vol. 2, no. 31, 2006. doi: https://doi.org/10.22517/23447214.6399, pp. 1.
[8] O. F. Avilés S., “Identificación de sistemas,” Ciencia e Ingeniería Neogranadina, vol. 11, pp. 75-79, dic. 2001. doi: https://doi.org/10.18359/rcin.1359.
[9] O. F. Avilés S., P. A. Niño S., y L. Solaque, “Identificación de parámetros de sistemas dinámicos,” Ciencia e Ingeniería Neogranadina, vol. 12, pp. 41-51, jul. 2002.
[10] J. Franco, “Introducción a la identificación de sistemas,” Técnica Industrial, ene. 2009. [Online]. Available: https://www.tecnicaindustrial.es/wp-content/uploads/Numeros/16/37/a37.pdf
[11] E. Vallejo, “Identificación paramétrica de sistemas dinámicos,” Científica Ingeniería y Desarrollo, no. 2, pp. 10-22, 1997.
[12] J. Aracil, F. Gordillo, Dinámica de sistemas. Alianza Editorial, 1997. [Online]. Available: https://tiesmexico.cals.cornell.edu/courses/shortcourse5/minisite/pdf/Literatura/Aracil%20Gordillo%20DS.pdf.
[13] B. Douglas, “The Fundamentals of Control Theory,” [Online]. Available: https://engineeringmedia.com/books
[14] E. Adam, Instrumentación y control de procesos. Ediciones UNL, 2020. [Online]. Available: https://www.unl.edu.ar/editorial/index.php?act=showPublicacion&id=7325
[15] R. Burns, Advanced Control Engineering. Elsevier, 2001, pp. 1.
[16] A. Carrillo Paz, Sistemas Automáticos de Control-Fundamentos Básicos de Análisis y Modelado, 2.a ed. Fondo Editorial UNERMB, 2011, pp. 1.
[17] R. C. Dorf, Sistemas de Control Moderno. Pearson Educación, 2005, pp. 1.
[18] K. J. Keesman, System Identification: An Introduction. Springer Science & Business Media, 2011. doi: 10.1007/978-1-4419-9368-7, pp. 1.
[19] K. Ogata, Dinamica de Sistemas. Pearson Educación, 1988, pp. 1.
[20] C. Valdivia Miranda, Sistemas de control continuos y discretos. Paraninfo, 2012, pp. 1.
[21] J. J. DiStefano, A. J. Stubberud, J. DiStefano, A. Stubberud, y I. Williams, Schaum’s Outline of Feedback and Control Systems. McGraw Hill Professional, 1995, pp. 1.
[22] L. Ljung y T. Glad, Modeling of Dynamic Systems. Prentice Hall PTR, 1994, pp. 1.
[23] M. Ortiz, Sistemas dinámicos en tiempo continuo: Modelado y simulación. OmniaScience, 2018. Accedido: 14 de agosto de 2022. [Online]. Available: https://www.omniascience.com/books/index.php/scholar/catalog/book/38
[24] W. Palm III, System Dynamics. McGraw-Hill Higher Education, 2013, pp. 1.
[25] M. N. Arias, V. O. Bravo, y W. S. Serna, “Identificación y modelamiento matemático, a partir de datos entrada-salida de un sistema de presión de aire,” Scientia et Technica, vol. 23, no. 4, 2018. doi: https://doi.org/10.22517/23447214.17201.
[26] V. O. Bravo, M. N. Arias, L. E. A. González, y J. P. G. Tamayo, “Control algebraico de una esfera suspendida magnéticamente: Diseño e implementación en hardware usando un procesador digital de señales,” Scientia et Technica, vol. 25, no. 1, pp. 6-13, 2020.
[27] J. Reyes Quesada, Modelado, simulación y control de un tanque con control de temperatura, Universidad de Sevilla, 2021. [Online]. Available: https://idus.us.es/handle/11441/126268.
[28] E. D. N. Guerrero y F. A. V. D. L. Torre, “Desarrollo de un modelo matemático, cinemático y dinámico con la aplicación de software, para modificar el funcionamiento de un dron, para que este realice monitoreo automático,” recimundo, vol. 4, no. 1(Esp), 2020. doi: https://doi.org/10.26820/recimundo/4.(1).esp.marzo.2020.332-343 , pp. 1.
[29] E. Herrera, K. Herrera-Mayorga, I. Herrera, L. Sierra Martínez, y D. Peluffo, “Comparación de controladores y modelado matemático de un levitador magnético,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, no. E25, pp. 424-438, ene. 2020.
[30] L. P. T. Pérez, J. S. B. Guamán, y J. E. V. Sampedro, “Simulación de un modelo matemático con Matlab (Simulink), para dos tanques industriales conectado en paralelo,” Polo del Conocimiento, vol. 7, no. 6, pp. 2652, jul. 2022. doi: https://doi.org/10.23857/pc.v7i6.4351.
[31] W. Bolton, Mecatrónica. Alpha Editorial, 2017.
[32] C. M. Close, D. K. Frederick, y J. C. Newell, Modeling and Analysis of Dynamic Systems. John Wiley & Sons, 2001, pp. 1.
[33] J. J. D’Azzo, S. N. Sheldon, y C. H. Houpis, Linear Control System Analysis and Design. CRC Press, 2003, pp. 1.
[34] M. Davies y T. L. Schmitz, System Dynamics for Mechanical Engineers. Springer, 2014, pp. 1.
[35] R. H. Gaviño, Introducción a los sistemas de control: Conceptos, aplicaciones y simulación con MATLAB. Prentice Hall Mexico, Mexico DF, 2010, pp. 1.
[36] D. G. Zill, Ecuaciones Diferenciales Con Aplicaciones de Modelado. Cengage Learning Latin America, 2009, pp. 1.
[37] A. J. Truscott y P. E. Wellstead, Bond graphs modelling for chassis control, en IEE Colloquium on Bond Graphs in Control, abr. 1990, pp. 5/1-5/2.
[38] L. Yu y X. Qi, Bond-graph modeling in system engineering, en 2012 International Conference on Systems and Informatics (ICSAI2012), may 2012, pp. 376-379. doi: https://doi.org/10.1109/ICSAI.2012.6223638.
[39] J. A. L. Ruiz, Introduccion a la Tecnica de Bond Graph. [Online]. Available: https://www.cartagena99.com/recursos/alumnos/apuntes/Introduccion%20al%20BOND-GRAPH%20-%20TEORIA.pdf.
[40] W. Borutzky, Bond Graph Methodology, 1. Aufl. London: Springer Verlag London Limited, 2010. doi: https://doi.org/10.1007/978-1-84882-882-7, pp. 1.
[41] W. Borutzky, Ed., Bond Graph Modelling of Engineering Systems. New York, NY: Springer New York, 2011. doi: https://doi.org/10.1007/978-1-4419-9368-7, pp. 1.
[42] J. Kypuros, System Dynamics and Control with Bond Graph Modeling. Boca Raton: CRC Press, 2013. doi: https://doi.org/10.1201/b14676, pp. 1.
[43] L. Ljung, System Identification: Theory for the User. Upper Saddle River, NJ: Prentice Hall PTR, 1998, pp. 1.
[44] J. U. Thoma, Introduction to bond graphs and their applications. Primera edición. Oxford; New York: Pergamon Press, 1975. [Online]. Available: https://www.sciencedirect.com/science/book/9780080188812. DOI: 10.1016/B978-0-08-018881-2.X5000-0, pp. 1.
[45] Bond graph, Wikipedia, 16 de junio de 2022. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Bond_graph&oldid=1093478639
[46] J. F. Broenink, Introduction to Physical Systems Modelling with Bond Graphs, 1999, pp. 1.
[47] L. H. Ríos G. y M. Bueno L., “Modelo Matemático para un Robot Móvil,” Scientia Et Technica, vol. XIV, no. 38, pp. 13-18, 2008.
[48] V. Ignatenko, A. Yudintsev, y D. Lyapunov, Application of State-Space Method for Control System Analysis, en 2019 International Siberian Conference on Control and Communications (SIBCON), abr. 2019, pp. 1-5. doi: https://doi.org/10.1109/SIBCON.2019.8729658.
[49] S. Erfani y M. Ahmadi, Fundamentals of generalized Laplace transform techniques for linear time-varying systems, en ISSCS 2011 - International Symposium on Signals, Circuits and Systems, jun. 2011, pp. 1-4. doi: https://doi.org/10.1109/ISSCS.2011.5978707.
[50] J. Y. Rodriguez Gonzalez y W. R. Briceño Camacho, “Transformada de laplace y sus aplicaciones en sistemas dinámicos: una revisión,” Visión Electrónica, 2019. [Online]. Available: https://repository.udistrital.edu.co/handle/11349/22361, pp. 1.
[51] S. L. Campbell y R. Haberman, Introduction to Differential Equations with Dynamical Systems. Princeton University Press, 2011, pp. 1.
[52] C.-T. Chen, Analog and Digital Control System Design. Saunders College Publishing, 2006.
[53] R. T. Stefani, B. Shahian, C. J. Savant, y G. H. Hostetter, Design of Feedback Control Systems, Fourth Edition. Oxford, New York: Oxford University Press, 2001.
[54] M. G. Simoes y F. A. Farret, Modeling and Analysis of Electrical Circuits with Block Diagrams, en Modeling Power Electronics and Interfacing Energy Conversion Systems, 2017, pp. 43-59. doi: https://doi.org/10.1002/9781119058458.ch3.
[55] X. Espinoza, Manual de fracciones parciales. Abya-Yala/UPS, 2012, pp. 1.
[56] T. B. A. Senior y T. B. A. Senior, Mathematical Methods in Electrical Engineering. Cambridge University Press, 1986, pp. 1.
[57] M. R. Spiegel, Schaum’s Outline of Laplace Transforms. McGraw Hill Professional, 1965, pp. 1.
[58] B. M. L. Sosa, E. Y. F. Perez, J. M. Salamanca, y O. I. H. Martinez, “Diseño e implementación de un sistema de control de vuelo para un vehículo aéreo no tripulado tipo cuadricóptero,” Tecnura, vol. 21, no. 53, 2017. doi: https://doi.org/10.14483/22487638.10256.
[59] A. B. Yildiz, “Electrical equivalent circuit based modeling and analysis of direct current motors,” International Journal of Electrical Power & Energy Systems, vol. 43, no. 1, pp. 1043-1047, dic. 2012. doi: https://doi.org/10.1016/j.ijepes.2012.06.063.
[60] F. E. Moreno García y J. A. Becerra Vargas, Estudio y ánalisis de sistemas dinámicos. Cúcuta, Universidad Francisco De Paula Santander, 2012, pp. 1.
[61] E. Granda-Gutiérrez, O. Orta, J. C. Díaz-Guillén, M. Jiménez, M. Osorio, y M. González Albarrán, Modelado y simulación de celdas y paneles solares, oct. 2013. doi: https://doi.org/10.13140/2.1.4192.8968, pp. 1.
[62] T. Luukkonen, Modelling and control of quadcopter. Aalto University, 22 de agosto de 2011, pp. 1.
[63] J. J. Borrero Domínguez, N. J. Pinzón Gil, y I. C. González Alvarado, Diseño y simulación de un vehículo híbrido no tripulado radio controlado para la medición de parámetros ambientales, Universidad Piloto de Colombia, 2018. Accedido: 13 de septiembre de 2022. [Online]. Available: https://repository.unipiloto.edu.co/handle/20.500.12277/4827
[64] A. Asbayou et al., “Method using simple RLC circuit for electrical characterization of PV panels,” Materials Today: Proceedings, vol. 58, pp. 1033-1038, ene. 2022. doi: https://doi.org/10.1016/j.matpr.2022.01.034.
[65] I. Trenev, A. Tkachenko, y A. Kustov, “Movement stabilization of the parrot mambo quadcopter along a given trajectory based on PID controller,” IFAC-PapersOnLine, vol. 54, n.o 13, pp. 227-232, ene. 2021. doi: https://doi.org/10.1016/j.ifacol.2021.10.450.
[66] J. Bai y Y. Wang, Dynamic circuit analysis design and simulation, en 2012 International Symposium on Instrumentation & Measurement, Sensor Network and Automation (IMSNA), ago. 2012, vol. 2, pp. 512-514. doi: https://doi.org/10.1109/MSNA.2012.6324635.
[67] C. Alexander y M. Sadiku, Fundamentos de Circuitos Electricos. México: McGraw-Hill, 2013, pp. 1.
[68] M. Jaimes Sallo y M. Sacatuma Cruz, Circuitos eléctricos modelado mediante ecuaciones diferenciales de orden fraccionario, Universidad Nacional de San Antonio Abad del Cusco, 2016. [Online]. Available: https://repositorio.unsaac.edu.pe/handle/20.500.12918/2705.
Copyright (c) 2024 Ingeniería Solidaria
This work is licensed under a Creative Commons Attribution 4.0 International License.
Cession of rights and ethical commitment
As the author of the article, I declare that is an original unpublished work exclusively created by me, that it has not been submitted for simultaneous evaluation by another publication and that there is no impediment of any kind for concession of the rights provided for in this contract.
In this sense, I am committed to await the result of the evaluation by the journal Ingeniería Solidaría before considering its submission to another medium; in case the response by that publication is positive, additionally, I am committed to respond for any action involving claims, plagiarism or any other kind of claim that could be made by third parties.
At the same time, as the author or co-author, I declare that I am completely in agreement with the conditions presented in this work and that I cede all patrimonial rights, in other words, regarding reproduction, public communication, distribution, dissemination, transformation, making it available and all forms of exploitation of the work using any medium or procedure, during the term of the legal protection of the work and in every country in the world, to the Universidad Cooperativa de Colombia Press.