• Research Articles

    OpenFOAM reduced channel modeling análisis

    Vol. 19 No. 2 (2023)
    Published: 2023-05-01
    Mónica Yineth Lara Pérez
    Universidad Santo Tomás
    Elías Daniel David Nova Burgos
    Universidad Santo Tomás
    Martha Patricia Montenegro Carrillo
    Universidad Santo Tomás
    Angélica María Tibidor Jara
    Universidad Santo Tomás

    Introduction: The article is a product of the research “Analysis of open channel models with reduction in Openfoam” developed at Universidad Santo Tomás in 2022 integrating computational fluid dynamics (cfd), in an open channel with reduction of multiphase, isotropic, isothermal, turbulent and steady state flow.

    Problem: Drinking water supply requires efficient treatment, and to achieve this, the hydrodynamic and physicochemical processes of the treatment plant units must be known in detail. Simulation is used to reduce costs and to perform multiple experiments. A robust hydraulic parameter readout system increases the reliability of modeling [1]. The larger source of experimental data leads to a more reliable model.

    Objective: Familiarize the reader with the tools for learning and optimization of conventional treatment systems for human water supply. Research also contributes to ensuring environmental sustainability and reducing the proportion of people without sustainable access to water and sanitation services, especially in rural areas where lack of water infrastructure is a prevalent problem.

    Method: Simulation of complex turbulence models by means of energy, mass and momentum conservation equations by means of Openfoam solvers.

    Results: There is a convergence since time 5952, since after this time most of the residual limit values are in the order of 10-3 and 10-4, and taking into account the state of the art which states that the solution has converged if the residual is in the order of these values

    Conclusions: A contribution has been made to the knowledge of computational fluid dynamics, generating an approach to the modeling of channels to the students of the civil engineering faculty of the Santo Tomas University, for advances in future research, thus strengthening in an institutional way the use of Openfoam for the modeling of complex problems in water transport systems.

    Keywords: Openfoam, reduction channel, computational fluid dynamics (cfd), simulation process, validation

    How to Cite

    [1]
    M. Y. Lara Pérez, E. D. D. Nova Burgos, M. P. Montenegro Carrillo, and A. M. Tibidor Jara, “OpenFOAM reduced channel modeling análisis”, ing. Solidar, vol. 19, no. 2, pp. 1–21, May 2023, doi: 10.16925/357-6014.2023.02.01.

    A. Mohammadian, M. Heyrani, I. Nistor y O. Faruk, “Application of numerical and experimental modeling to improve the efficiency of parshall flumes: a review of the state-of-the-art”, Hydrology, vol. 9, n.° 2, pp. 1-27, 2022. doi: https://doi.org/10.3390/hydrology9020026

    Organización de las Naciones Unidas, “Naciones Unidas, Colombia”, [En línea]. Disponible en: https://colombia.un.org/es/sdgs. [Último acceso: 22 Septiembre 2021].

    M. Castro, J. Almeida, J. Ferrer y D. Diaz, “Indicadores de la calidad del agua: evolución y tendencias a nivel global”, Ingeniería Solidaria, vol. 10, n.º 17, pp. 111-124, 2014. doi: https://dx.doi.org/10.16925/in.v9i17.811

    B. Wols, Computational Fluid Dynamics in Drinking Water Treatment, IWA Publishing, 2011.

    F. Moukalled, L. Mangani y M. Darwish, The Finite Volume Method In Computational Fluid, New York: Springer International Publishing, 2016.

    M. Heyrani, A. Mohammadian y I. Nistor, Numerical Simulation of Flow in Parshall Flume Using Selected Nonlinear Turbulence Models, Hydrology, vol. 8, n.° 4, 2021, pp. 1-15. doi: https//10.3390/hydrology8040151

    H. Young y R. Freedman, Física universitaria, México: Pearson, 2013.

    Technische Universität Wien Institute of Chemical, OpenFOAM, Basic Training, Berlin: Chemical Engineering, 2019.

    C. Knatz, S. Rafferty y A. Delescinskis, “Optimization of water treatment plant flow distribution with CFD modeling of an influent channel”, Water Quality Research Journal of Canada, vol. 50, n.º 1, pp. 72-82., 2015. doi: https://doi.org/10.2166/wqrjc.2014.024

    J. Muñoz-Barranco, “Evaluación de la eficiencia de métodos acoplados en la resolución de problemas fluidomecánicos con OpenFOAM”, tesis de pregrado, Universidad de Jaén, Jaén, España: 2015. [En línea]. Disponible en: https://hdl.handle.net/10953.1/3786

    E. Mattos, J. Flores, W. Ojeda, M. Iñiguez, C. Diaz y H. Salinas, “Hydraulic Analysis of a Compound Weir (Triangular - Rectangular) Simulated With Computational Fluid Dynamics (CFD)”, Tecnología y Ciencias del Agua, vol. 12, n.° 4, pp. 112-1622021. doi: https://doi.org/10.24850/j-tyca-2021-04-03

    E. Mattos, J. Velásquez, W. Ojeda, M. Iñiguez y C. Diaz, “Hydraulic analysis of a compound weir (triangular-rectangular) simulated with computational fluid dynamics (CFD)”, Tecnología y Ciencias del Agua, vol. 12, n.º 4, pp. 112-162, 2021. doi: https://doi.org/10.24850/j-tyca-2021-04-03

    G. Díaz, “Modelación mediante software CFD de los ensayos de vertedero rectangular y triangular del canal hidráulico del Laboratorio de Hidráulica de la Universidad Santo Tomás, Sede Villavicencio”, tesis de pregrado, Universidad Santo Tomás, Villavicencio, Colombia: 2020. [En línea]. Disponible en: https://hdl.handle.net/11634/29932

    P. Negrón, Redes neuronales sigmoidal con algoritmo LM para pronóstico de tendencia del precio de las acciones del IPSA, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile: 2014.

    H. Imanian y A. Mohammadian, Numerical simulation of flow over ogee crested spillways under high hydraulic head ratio, Engineering Applications of Computational Fluid Mechanics, vol. 13, United Kingdom: Engineering Applications of Computational Fluid Mechanics, 2019. https://doi.org/10.1080/19942060.2019.1661014

    L. Jiang, M. Diao, H. Sol y Y. Ren, “Numerical modeling of flow over a rectangular broad-creasted weir with a sloped upstream face”, Water, vol. 10, n.° 11, pp. 1-12, 2018. doi: https://doi.org/10.3390/w10111663

    M. Heyrani, A. Mohammadian, I. Nistor y O. Dursun, “Numerical modeling of venturi flume”, Hydrology, vol. 8, n.º 27, pp. 17, 2021. doi: https://doi.org/10.3390/hydrology8010027

    TecQuipment, “7.5 Metre Flume”, [En línea]. Disponible en: https://www.tecquipment.com/es/7-5-metre-flume-fc300. [Último acceso: 31 10 2022].

    Suplementos Industriales en Colombia, “Vía Industrial,» [En línea]. Disponible en: www.viaindustrial.com/medidor-de-flujo-de-mano-hach-fh-950-fh-950-hach/pp/P238104. [Último acceso: 31 10 2022].

    D. Montgomery, “Design and Analysis of Experiments”, John Wiley & Sons, Inc, vol. 5, 1997.

    L. Jiang, M. Diao, H. Sol y Y. Ren, “Numerical modeling of flow over a rectangular broad-crested weir with a sloped upstream face”. Water, vol. 10, n.° 11, pp. 1-12, 2018. doi: https://doi.org/10.3390/w10111663

    T. Deshpande, Evaluación del Rendimiento del Solucionador de Flujo Bifásico InterFOAM, Ciencia Computacional y Descubrimiento, 2012.

    W. M. Castellanos Guerrero y S. B. Chaves Pabón, “Efecto del envejecimiento de mezclas asfálticas en el ciclo de vida del pavimento desde el aspecto técnico y ambiental. Revisión del estado de conocimiento”, Rev. Vínculos, vol. 17, n.º 1, pp. 7-23, jun. 2020. doi: https://doi.org/10.14483/2322939X.16227

    L. Cuenca, “Cálculo de la longitud mínima de aproximación para una canaleta Parshall a través de la comparación del comportamiento hidráulico entre un modelo numérico y un modelo físico”, Universidad Católica de Colombia, Bogotá, 2019. https://hdl.handle.net/10983/23663

    MÉTRICAS
    ARTICLE VIEWS: 487
    PDF VIEWS: 278
    Metrics
    Metrics Loading ...
    https://plu.mx/plum/a/?doi=10.16925/357-6014.2023.02.01