Microfiltration Device For Circulating Tumor Cells Isolation (MEMS)-(CTCS)
Profesional Ingeniero Mecánico, Programa de maestría en ingeniería mecánica, Escuela de ingeniería mecánica, Universidad Industrial de Santander, Bucaramanga, Colombia.
email: alan2208436@correo.uis.edu.co
Doctor en Ingeniería Mecánica, Universidad Industrial de Santander, Bucaramanga, Colombia.
email: cborras@uis.edu.co
Introduction: This document proposes the design and simulation of a microfilter device for the capture of circulating tumor cells, motivated by support for prevention and treatment methods against cancer, the objective of the proposal is the designed a device for separating cancer cells from blood fluid, with high efficiency.
Methods: Initially, it was characterized the behavior of cells in blood fluid red blood cells (RBC), white blood cells (WBC) cancer cells (CTC), defining the dynamic model, boundary conditions, types of multiphase fluid, and flow rate, the mechanical properties of the cell membrane and the viscosity of each type are defined, for cancer cells according to the literature, the cell was squeezed and the critical pressure was analyzed. The design of the filtration device by a variation of the flow, geometry, critical streamline analysis, and vortex generation, the best hydrodynamic condition generated is selected due to favorable behavior of cell classification, the first stage circulating cancer cells, in the second output white cells and RBCs are sorting.
Conclusions: Finally, the final geometry was evaluated and the efficiency of the filter device was determined, which performs the filtering process, in the first stage the cancer cells are captured with 99.99% efficiency, in the final output the white cells and red cells are captured 99.99% since the red cells are completely filtered and the white cells separated using the viscous properties and surface tension the filter generates 100% purity by sorting CTCs with no RBC or WBC contamination.
T. Wu, and L. Fu, “Clinical Applications of Circulating Tumor Cells in Pharmacotherapy: Challenges and Perspectives.” Molecular pharmacology vol. 92,3 (2017): 232-239. doi:10.1124/mol.116.108142.
P. Stanley, M. Leong, and W. William “Micrometastatic cancer cells in lymph nodes, bone marrow, and blood: Clinical significance and biologic implications.” CA: a cancer journal for clinicians vol. 64,3 195-206 (2014). doi:10.3322/caac.21217
M. Shyamala and A. H. Daniel, “Circulating tumor cells: a window into cancer biology and metastasis.” Current opinion in genetics & development vol. 20,1 96-9 (2010). doi:10.1016/j.gde.2009.12.002
GeneticLab Co, L. “Circulating Tumor Cells. Retrieved from Circulating Tumor Cells” information site: http://www.ctc-lab.info/english/ctc1/aboutc tc:html. (2021).
K. Molly, W. Yang and N. Sunitha, “The incorporation of microfluidics into circulating tumor cell isolation for clinical applications.” Current opinion in chemical engineering vol. 11 59-66. (2016) doi:10.1016/j.coche.2016.01.005
R. HAROUAKA, M. NISIC, S. ZHENG. “Circulating tumor cell enrichment based on physical properties. Journal of laboratory automation”. vol. 18,6: 455-68. Jul 5 2013. doi:10.1177/2211068213494391.
M. AGHAAMOO. Deformability-based circulating tumor cell separation with conical-shaped microfilters: Concept, optimization, and design criteria. Biomicrofluidics Jun 3 2015. vol. 9,3 034106. doi:10.1063/1.4922081.
M. HASHEM, A. Mohammad, X. CHEN, H. TAN. “An adaptive mesh refinement-based simulation for pressure-deformability analysis of a circulating tumor cell”. vol Proc. SPIE 10875, Microfluidics, BioMEMS, and Medical Microsystems XVII, 108750L. March 4 2019. doi: 10.1117/12.2507098.
L. XIAO, et al. “Effects of flowing RBCs on adhesion of a circulating tumor cell in microvessels. Biomechanics and modeling in mechanobiology”. vol. 16,2: 597-610. Oct 2016 doi:10.1007/s10237-016-0839-5
N. TAKEISHI, et al. “Flow of a circulating tumor cell and red blood cells in microvessels”.Physical Review. vol, 92(6), 063011. 2015 doi:10.1103/PhysRevE.92.063011
J. K. ACTOR. “Cells and Organs of the Immune. Elsevier's Integrated Review Immunology and Microbiology” - Elsevier eBook on VitalSource (Retail Access Card), 2nd Edition. 2012. ISBN: 9781455755790.
R. M. Hochmuth. “Micropipette aspiration of living cells.” Journal of biomechanics vol. 33,1 15-22. (2000): doi:10.1016/s0021-9290(99)00175-x
U. Nobis, A. R. Pries, G. R. Cokelet, P. Gaehtgens. “Radial distribution of white cells during blood flow in small tubes”. Microvascular research. vol. 29,3: 295-304. May 1985. doi:10.1016/0026-2862(85)90020-2
D. KATANOV. “Computer simulations of soft particles in flow”. der Universität zu Köln. 2016.
R. FÅHRÆUS, T. LINDQVIST. “The Viscosity of The Blood in Narrow Capillary Tubes”. American Journal of Physiology-Legacy Content.. Vol. 96(3), 562–568. 1931 doi:10.1152/ajplegacy.1931.96.3.562
I. Cécile, M. Dorian, M. Alexis, H. Delphine, C. Anne, M. Simon, V. et al., “Self-organization of red blood cell suspensions under confined 2D flows”. Soft Matter, 10.1039.C8SM02571A. (2019). doi:10.1039/c8sm02571a
M. Sneha, B. Kumar, T. Chandra, A. Sen. “Development of a microfluidic device for cell concentration and blood cell-plasma separation”. Biomedical microdevices. vol. 17,6: 115. December 2015. doi:10.1007/s10544-015-0017-z
P. Sajeesh, M. Doble, A. K. Sen. "Hydrodynamic resistance and mobility of deformable objects in microfluidic channels", Biomicrofluidics 8, 054112 (2014) https://doi. org/10.1063/1.4897332
M. Bahrami, M. Yovanovich, J. Culham, “A novel solution for pressure drop in singly connected microchannels of arbitrary cross-section”. Int. J. Heat Mass Transfer 50 (13–14) (2007). doi:10.1016/j.ijheatmasstransfer.2006.12.019
M. Akbari, D. Sinton, M. Bahrami.“Viscous flow in variable cross-section microchannels of arbitrary shapes” 54(17-18). 2011 https://doi.org/10.1016/j.ijheatma sstransfer. 2011.04.028
M. Aghaamoo, Z. Zhang, X. Chen, and J. Xu. “Deformability-based circulating tumor cell separation with conical-shaped microfilters: Concept, optimization, and design criteria.” Biomicrofluidics vol. 9,3 034106. 3 Jun. 2015, doi:10.1063/1.4922081
A. Jafari, P. Zamankha, S.M. Mousavi, P. Kolari, “Numerical investigation of blood flow. Part II: In capillaries” Communications in Nonlinear Science and Numerical Simulation. Volume 14, Issue 4, p. 1396-1402. (2010) doi:10.1016/j.cnsns.2008.04.007
H. K. Versteeg, W. Malalasekera. “The finite volume method - An Introduction to Computational Fluid Dynamics -Second Edition” Pearson Education Limited 2007.
M. Mehrabadi, N David. Ku, and K. Cyrus. “A continuum model for platelet transport in flowing blood based on direct numerical simulations of cellular blood flow.” Annals of biomedical engineering vol. 43,6 1410-21. (2015): doi:10.1007/s10439-014-1168-4
L. L. Xiao, Y. Liu, and S. Chen.“Effects of flowing RBCs on adhesion of a circulating tumor cell in microvessels.” Biomechanics and modeling in mechanobiology vol. 16,2 597-610. (2017): doi:10.1007/s10237-016-0839-5
X. Zhang, M. A. Hashem, X. Chen, and H. Tan “On passing a non-Newtonian circulating tumor cell (CTC) through a deformation-based microfluidic chip”, Theoretical and Computational Fluid Dynamics, vol. 32, no. 6, pp. 753–764, 2018. doi:10.1007/s00162-018-0475-z.
F. Y. Leong, Q. Li, C. Lim. K-H. “Modeling cell entry into a micro-channel.” Biomech Model Mechanobiol 10 755–766 (2011). https://doi.org/10.1007/s10237-010-0271-1
K. Wang, X. H. Sun, Y. Zhang, T. Zhang, Y. Zheng, Y. C. Wei, et al “Characterization of cytoplasmic viscosity of hundreds of single tumour cells based on micropipette aspiration” R. Soc. open sci.6181707181707. 2019. http://doi.org/10.1098/rsos.181707
R. Hochmuth. "Measuring the Mechanical Properties of Individual Human Blood Cells." ASME. J Biomech Eng. November 115(4B): 515–519. 1993; https://doi.org/10. 1115/1.2895533
D. Cheng, Z. Nastaran, K. Konstantinos. “Biomechanics of the Circulating Tumor Cell Microenvironment”. Advances in Experimental Medicine and Biology. Biomechanics in Oncology Volume 1092. Chapter 11, 209–233. (2018). doi:10.1007/978-3-319-95294-9_11.
F. Guglietta, M. Behr, L. Biferale, G. Falcucci, M. Sbragaglia. “On the effects of membrane viscosity on transient red blood cell dynamics”. Soft Matter. 16, 6191-6205 (2020). doi:10.1039/D0SM00587H
T. Omori, T. Ishikawa, D. Barthes, A.-V. Salsac, Y. Imai, T. Yamaguchi. “Tension of red blood cell membrane in simple shear flow”. PHYSICAL REVIEW E vol 86, 056321 (2012) doi:10.1103/PhysRevE.86.056321
Q. Guo, S. M. McFaul, H. Ma. “Deterministic microfluidic ratchet based on the deformation of individual cells”. Soft Matter 83 051910 (2011) doi:10.1103/PhysRevE. 83.051910
A. Preetha. N. Huilgol. R. Banerjee. “Interfacial properties as biophysical markers of cervical cancer.” Biomedecine & pharmacotherapie vol. 59,9 491-7. (2005): doi:10.1016/j. biopha.2005.02.005
E. Evans, A. Yeung. “Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration”. Biophysical Journal. 56(1), 151–160. (1989). doi:10.1016/s0006-3495(89)82660-8.
Y. C. Fung “Biomechanics-Mechanical properties of living tissues-Second edition ” second ed. Springer. (1993) https://doi.org/10.1007/978-1-4757-2257-4
F. Meyskens, S. Thomson, T. Moon. “Quantitation of the number of cells within tumor colonies in semisolid medium and their growth as oblate spheroids.” Cancer research vol. 44,1 :271-7. (1984).
A. S. Kashani, M. Packirisamy “Cellular deformation characterization of human breast cancer cells under hydrodynamic forces”. AIMS Biophysics, 4(3): 400-414. (2017). doi: 10.3934/biophy.2017.3.400
G. Thomas, M. Stamp, E. Melanie, W Achim, F. Thomas "Hydrodynamic and label-free sorting of circulating tumor cells from whole blood", Appl. Phys. Lett. 107, 203702 (2015) https://doi.org/10.1063/1.4935563
C. Renier, P. Corinne, C. Edward, L. James, E. Haiyan, C. Lemaire, et al., “Label-free isolation of prostate circulating tumor cells using Vortex microfluidic technology.” npj Precision Oncology, 1(1), 15–. (2017). doi:10.1038/s41698-017-0015-0
D. González-Esparza, J. A. Del Angel-Arroyo, E. A. Elvira-Hernández, A. L. Herrera-May and L. A. Aguilera-Cortés, "Design and Modeling of a Microfluidic Device with Potential Application for Isolation of Circulating Tumor Cells," 2019 IEEE International Conference on Engineering Veracruz (ICEV), pp. 1-7, 2019 doi: 10.1109/ICEV .2019.8920484.
Copyright (c) 2023 Ingeniería Solidaria
This work is licensed under a Creative Commons Attribution 4.0 International License.
Cession of rights and ethical commitment
As the author of the article, I declare that is an original unpublished work exclusively created by me, that it has not been submitted for simultaneous evaluation by another publication and that there is no impediment of any kind for concession of the rights provided for in this contract.
In this sense, I am committed to await the result of the evaluation by the journal Ingeniería Solidaría before considering its submission to another medium; in case the response by that publication is positive, additionally, I am committed to respond for any action involving claims, plagiarism or any other kind of claim that could be made by third parties.
At the same time, as the author or co-author, I declare that I am completely in agreement with the conditions presented in this work and that I cede all patrimonial rights, in other words, regarding reproduction, public communication, distribution, dissemination, transformation, making it available and all forms of exploitation of the work using any medium or procedure, during the term of the legal protection of the work and in every country in the world, to the Universidad Cooperativa de Colombia Press.