• Research Articles

    Analysis of the efficiency of hybrid photovoltaic systems implemented by the IPSE in the non-interconnected zones of the department of Guainía

    Vol. 18 No. 3 (2022)
    Published: 2022-11-25
    Jairo Alberto Valencia Llanos
    Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas (IPSE)
    Danna Liceth Reyes Viviescas
    Universidad Santo Tomás

    Introduction: This article is the product of the research called "Analysis of the efficiency in hybrid photovoltaic systems implemented by the IPSE in the Non-Interconnected Zones of the department of Guainía", a project developed by the Institute for Planning and Promotion of Energy Solutions (IPSE for its abbreviation in Spanish) in the period 2020 to 2021.

    Problem: The limited availability of energy service delivery hours and the use of a single energy source represented a lack of local energy security, lack of diversification of energy sources, high  emissions and energy inefficiency.

    Objective: Evaluate the energy conversion efficiency of Hybrid Photovoltaic Solar Systems - implemented by IPSE in the Non-Interconnected Zones of the department of Guainía.

    Methodology: The methodologies used for the evaluation of energy efficiency were: 1) Energy conversion method and form factor for solar panels. 2) Graphical analysis method with efficiency curves for grid-tied and bidirectional inverters. 3) Comparative analysis method between theoretical efficiencies and Specific Fuel Consumption (SFC) for diesel generator sets; and finally, the methodology for calculating the carbon footprint for these last components.

    Results: For solar panels, the theoretical and actual efficiency were 16.5% and 16.49% with the energy conversion method, and 100% and 78.39% with the form factor method. For inverters linked to the network it was 98.2% and bidirectional 96%; for the generator sets, the efficiency was determined from their fuel consumption with a difference of 2.55  compared to the current standard and Greenhouse Gas emissions on average were 112,465  in standby and 98,417  in prime operating mode.

    Conclusion: This research has shown that energy efficiency is a key factor for the good performance of energy systems.

    Originality: This research was conducted by using technical data provided by manufacturers and the own work ' own analysis.

    Keywords: emissions of CO2, energy efficiency, hybrid solar photovoltaic system, non-interconnected zones

    How to Cite

    [1]
    J. A. Valencia Llanos and D. L. Reyes Viviescas, “Analysis of the efficiency of hybrid photovoltaic systems implemented by the IPSE in the non-interconnected zones of the department of Guainía”, ing. Solidar, vol. 18, no. 3, pp. 1–30, Nov. 2022, doi: 10.16925/2357-6014.2022.03.04.

    T. Undurraga, “Implementación y evaluación de un sistema híbrido (solar-Diésel),” pp. 64–65, 2019. [Online]. Available: https://upcommons.upc.edu/bitstream/handle/2117/173251/TFG_UNDURRAGA_TOMAS.pdf?isAllowed=y&sequence=1

    F. J. Gómez González, “Diseño y optimización de un sistema híbrido renovable con gestión de la demanda y aplicaciones en península y modo Isla,” pp. 2–5, Oct. 2020. [Online]. Available: https://riunet.upv.es/bitstream/handle/10251/158563/G%c3%b3mez%20-%20DISE%c3%91O%20Y%20OPTIMIZACI%c3%93N%20DE%20UN%20SISTEMA%20H%c3%8dBRIDO%20RENOVABLE%20CON%20GESTI%c

    %93N%20DE%20LA%20DEMANDA%20Y%20APLICAC....pdf?sequence=1&isAllowed=y

    M. K. Deshmukh and S. S. Deshmukh, “Modeling of hybrid renewable energy systems,” Renewable and Sustainable Energy Reviews, vol. 12, no. 1, pp. 235–249, Jan. 2008. doi: 10.1016/j.rser.2006.07.011.

    G. C. Seeling-Hochmuth, “A combined optimisation concet for the design and operation strategy of hybrid-PV energy systems,” Solar Energy, vol. 61, no. 2, pp. 77–87, Aug. 1997. doi: 10.1016/S0038-092X(97)00028-5.

    S. M. Shaahid and I. El-Amin, “Techno-economic evaluation of off-grid hybrid photovoltaic–diesel–battery power systems for rural electrification in Saudi Arabia—A way forward for sustainable development,” Renewable and Sustainable Energy Reviews, vol. 13, no. 3, pp. 625–633, Apr. 2009. doi: 10.1016/j.rser.2007.11.017.

    D. Papadopoulos and E. Maltas, “Design, Operation and Economic Analysis of Autonomous Hybrid PV-Diesel Power Systems Including Battery Storage,” Journal of Electrical Engineering, vol. 61, no. 1, pp. 3–10, Jan. 2010. doi: 10.2478/v10187-010-0001-z.

    M. Ashari and C. V. Nayar, “An optimum dispatch strategy using set points for a photovoltaic (PV)–diesel–battery hybrid power system,” Solar Energy, vol. 66, no. 1, pp. 1–9, May 1999. doi: 10.1016/S0038-092X(99)00016-X.

    CONGRESO DE COLOMBIA, “Ley 1931 de 2018,” Gestor Normativo - Función Pública, p. 1, Jul. 2018. [Online]. Available: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=87765

    C. Espíndola and J. O. Valderrama, “Huella del Carbono. Parte 1: Conceptos, Métodos de Estimación y Complejidades Metodológicas,” Información tecnológica, vol. 23, no. 1, pp. 163–176, 2012. doi: 10.4067/S0718-07642012000100017.

    D. J. Parraga Cabezas and A. M. Molina Chavarro, “Calculo de huella de carbono en la Universidad de La Salle sede Norte para la formulación de propuestas de prevención y mitigación de gases de efecto invernadero,” pp. 17–180, 2020. [Online]. Available: https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/1883/

    J. D. Sánchez Rippe, O. I. Galvis Mora, P. Dávila, J. C. Gaviria Ortiz, H. H. Herrera Flórez, and I. D. Gómez Reyes, “Cálculo del factor de emisiones de la red de energía eléctrica en Colombia,” p. 1, Dec. 2020. [Online]. Available: https://www1.upme.gov.co/ServicioCiudadano/Documents/Proyectos_normativos/Documento_Tecnico_FE_2020.pdf

    E. Jacob-Lopes, L. Q. Zepka, and M. C. Deprá, “Carbon footprint and carbon market,” in Sustainability Metrics and Indicators of Environmental Impact, Elsevier, 2021, pp. 91–116. doi: 10.1016/B978-0-12-823411-2.00009-8.

    Md. Sahabuddin and I. Khan, “Multi-criteria decision analysis methods for energy sector’s sustainability assessment: Robustness analysis through criteria weight change,” Sustainable Energy Technologies and Assessments, vol. 47, p. 101380, Oct. 2021. doi: 10.1016/j.seta.2021.101380.

    R. Spalding-Fecher, “Indicators of sustainability for the energy sector: a South African case study,” Energy for Sustainable Development, vol. 7, no. 1, pp. 35–49. doi: 10.1016/S0973-0826(08)60347-6.

    I. Gunnarsdottir, B. Davidsdottir, E. Worrell, and S. Sigurgeirsdottir, “Indicators for sustainable energy development: An Icelandic case study,” Energy Policy, vol. 164, p. 112926, May 2022. doi: 10.1016/j.enpol.2022.112926.

    B. E. K. Nsafon, A. B. Owolabi, H. M. Butu, J. W. Roh, D. Suh, and J.-S. Huh, “Optimization and sustainability analysis of PV/wind/diesel hybrid energy system for decentralized energy generation,” Energy Strategy Reviews, vol. 32, p. 100570, Nov. 2020. doi: 10.1016/j.esr.2020.100570.

    X. Qi, J. Wang, G. Królczyk, P. Gardoni, and Z. Li, “Sustainability analysis of a hybrid renewable power system with battery storage for islands application,” J Energy Storage, vol. 50, p. 104682, Jun. 2022. doi: 10.1016/j.est.2022.104682.

    Y. Yuan, J. Wang, X. Yan, Q. Li, and T. Long, “A design and experimental investigation of a large-scale solar energy/diesel generator powered hybrid ship,” Energy, vol. 165, pp. 965–978, Dec. 2018. doi: 10.1016/j.energy.2018.09.085.

    H. Rezzouk and A. Mellit, “Feasibility study and sensitivity analysis of a stand-alone photovoltaic–diesel–battery hybrid energy system in the north of Algeria,” Renewable and Sustainable Energy Reviews, vol. 43, pp. 1134–1150, Mar. 2015. doi: 10.1016/j.rser.2014.11.103.

    F. F. Yanine and E. E. Sauma, “Review of grid-tie micro-generation systems without energy storage: Towards a new approach to sustainable hybrid energy systems linked to energy efficiency,” Renewable and Sustainable Energy Reviews, vol. 26, pp. 60–95, Oct. 2013. doi: 10.1016/j.rser.2013.05.002.

    UPME, “Integración de las energías renovables no convencionales en Colombia,” p. 1, 2015. [Online]. Available: http://www1.upme.gov.co/sgic/

    IPSE, “Gestión histórica del IPSE durante 2021,” Instituto de Planificación y Promoción de Soluciones Energéticas para Zonas No Interconectadas, p. 1, Dec. 2021. [Online]. Available: https://ipse.gov.co/seguridad-de-la-informacion-2/page/3/

    O. G. Cucaita Hurtado and I. O. Cabeza Rojas, “Tendencias en ingeniería de materiales para la fabricación de células solares fotovoltáicas,” Ingeniería Solidaria, vol. 13, no. 23, pp. 151–162, Sep. 2017. doi: 10.16925/in.v13i23.2070.

    C. Ramírez-Márquez and M. Martín, “Photovoltaic solar energy,” in Sustainable Design for Renewable Processes, Elsevier, 2022, pp. 397–439. doi: 10.1016/B978-0-12-824324-4.00029-9.

    J. B. Urbano, F. H. T. González, P. E. V. Perilla, and J. U. C. Contreras, “Estudio para el uso de la tecnología solar fotovoltaica,” Ingeniería Solidaria, vol. 6, no. 10–11, pp. 69–81, Jan. 2011. [Online]. Available: https://revistas.ucc.edu.co/index.php/in/article/view/453

    A. A. Bayod-Rújula, “Solar photovoltaics (PV),” in Solar Hydrogen Production, Elsevier, 2019, pp. 237–295. doi: 10.1016/B978-0-12-814853-2.00008-4.

    P. Breeze, “Modules, Inverters, and Solar Photovoltaic Systems,” in Solar Power Generation, Elsevier, 2016, pp. 71–80. doi: 10.1016/B978-0-12-804004-1.00010-5.

    H. A. Cornejo Lalupú, “Sistema solar fotovoltaico de conexión a red en el Centro materno infantil de la Universidad de Piura,” pp. 22–30, Oct. 2013. [Online]. Available: https://pirhua.udep.edu.pe/bitstream/handle/11042/1762/IME_172.pdf?seq

    olasolar.com, “Inversores-Cargadores,” p. 1, 2018. [Online]. Available: https://www.olasolar.com/inversores/inversores-cargadores/

    Deutsche Dgs, Deutsche Gesellschaft, and Deutsche Gesellshaft Sonn, Planning and Installing Photovoltaic Systems: A Guide for Installers, architects and engineers, pp. 302-303, vol. 2. London: Deutsche Gesellschaft für Sonnenenergie, 2007. [Online]. Available: https://books.google.com.co/books?

    id=fMo3jJZDkpUC&pg=PA302&lpg=PA302&dq=Ortsfest+PanZerplatte+Verschlossen&source=bl&ots=gv8xuTAOpM&sig=ACfU3U1AqJ-8sgmlR0Nj5NP6QFPx5NxGww&hl=es-419&sa=X&ved=2ahUKEwiH7O3zi7L4AhX-rmoFHXjqBIgQ6AF6BAgUEAM#v=onepage&q=Ortsfest%20PanZerplatte%20Verschlossen&f=false

    Monsolar.com, “Baterías Estacionarias | baterías solares opzs,” p. 1, 2019. [Online]. Available: https://www.monsolar.com/fotovoltaica-aislada/baterias/estacionarias.html

    A. Bakeer, A. Chub, Y. Shen, and A. Sangwongwanich, “Reliability analysis of battery energy storage system for various stationary applications,” J Energy Storage, vol. 50, p. 104217, Jun. 2022. doi: 10.1016/j.est.2022.104217.

    O. S. Khvatov and D. S. Kobyakov, “Increasing the Efficiency of a Diesel-Generator Power Plant,” Russian Electrical Engineering, vol. 91, no. 12, pp. 742–748, Dec. 2020. doi: 10.3103/S106837122012007X.

    ENVERD, “Venta de Generadores Diesel -【Solo Primeras Marcas】- Enverd,” p. 1, 2021. [Online]. Available: https://www.generadoreselectricos.org/generador-diesel/

    IPSE, “Caracterización Energética de las ZNI – IPSE-CNM,” p. 1, 2021. [Online]. Available: https://ipse.gov.co/cnm/caracterizacion-de-las-zni/

    J. Cepeda and A. Sierra, “Aspectos que afectan la eficiencia en los paneles fotovoltaicos y sus potenciales soluciones,” Repositorio Universidad Santo Tomás, pp. 1–10, 2017. [Online]. Available: https://repository.usta.edu.co/handle/11634/4196

    Risen solar technology, “High Performance Polycrystalline Module RSM60-6-260P-280P/5BB,” pp. 1–2, 2018. [Online]. Available: https://electricup.ro/wp-content/uploads/2021/03/Risen-Solar-RSM60-6-280P-280-W.pdf

    M. K. Mishra and V. N. Lal, “An improved methodology for reactive power management in grid integrated solar PV system with maximum power point condition,” Solar Energy, vol. 199, pp. 230–245, Mar. 2020. doi: 10.1016/j.solener.2020.02.001.

    P. Ibarra, “Control y evaluación de un seguidor solar de un eje,” pp. 1–98, Jan. 2021. [Online]. Available: http://repositorio.upsin.edu.mx/Fragmentos/tesinas/TesisMCAENERGIAPedroIbarra10276.pdf

    T. Vargas and A. Abrahamse, “An Open-Source Hardware I-V Curve Tracer For Monitoring Pv Output In Bolivia,” vol. 1, no. 14, pp. 100–116, 2014. [Online]. Available: http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2518-44312014000100007

    S. Mitsushima, B. Gollas, and V. Hacker, “Introduction,” in Fuel Cells and Hydrogen, Elsevier, 2018, pp. 1–13. doi: 10.1016/B978-0-12-811459-9.00001-3.

    O. D. Basak and B. S. Sazak, “Effect of developments on a PV system efficiency,” in 2013 4th International Symposium on Electrical and Electronics Engineering (ISEEE), Oct. 2013, pp. 1–6. doi: 10.1109/ISEEE.2013.6674325.

    S. A. Solar Technology, “Sunny Tripower 5000TL - 12000TL - El trifásico: no solo para el hogar,” p. 1, May 2017. [Online]. Available: https://autosolar.es/pdf/Ficha-tecnica-SMA-Sunny-Tripower-5000TL-8000TL-9000TL-10000TL.pdf

    SMA Solar Technology AG, “Sunny Island 4.4M / 6.0H / 8.0H | SMA Solar,” p. 1, Accessed: Jul. 17, 2022. [Online]. Available: https://www.sma.de/en/products/battery-inverters/sunny-island-44m-60h-80h.html

    LTD. Hengyang ritar power CO., “Temperature Effects on Capacity Relationship Between Charging Voltage and Temperature Discharge Characteristics Curve,” pp. 1–2, 2020. [Online]. Available: www.ritarpower.com

    RTR, “Compensación de Energía Reactiva,” p. 10, 2012. [Online]. Available: http://fotosdeelectricidad.es/wp-content/uploads/2012/11/CORRECCI%C3%93N-DEL-FACTOR-DE-POTENCIA.-RTR.pdf

    CREG, “Resolución No.074 (09 JUN. 2009 ),” p. 1, 2009. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/2b8fb06f012cc9c245256b7b00789b0c/8c5a6fffd85552f40525785a007a717c?OpenDocument

    UPME, “Calculadora Fecoc 2016,” p. 1, 2016. [Online]. Available: http://www.upme.gov.co/calculadora_emisiones/aplicacion/calculadora.html

    e3 Consultora Ambiental, Asociación Mexicana de Distribuidores de Automotores, and Cédula de Operación Anual, “Memoria de cálculo de emisiones de Compuestos y Gases d Efecto Invernadero,” p. 1, 2016. [Online]. Available: https://www.coursehero.com/file/97667260/Calculadora-RENE-AMDAxlsx/

    Atlas Copco, “Fuel Consumption Calculator,” p. 1, Accessed: May 18, 2022. [Online]. Available: https://rental.atlascopco.com/fuel-consumption-calculator

    R. García San José, “Combustion y combustibles,” pp. 4–11, Nov. 2001. [Online]. Available: https://www.studocu.com/row/document/university-of-namibia/quimica/combustion-y-combustibles/18058985

    Ministerio De Agricultura Y Desarrollo Rural, Ministerio De Minas Y Energía (Minminas), And Ministerio De Ambiente Y Desarrollo Sostenible, “Resolución 40666 DE 20 DE AGOSTO DE 2019,” p. 1, Aug. 2019. [Online]. Available: https://xperta.legis.co/visor/legcol/legcol_7cf604cfca3342778c7b89c731205d3b/coleccion-de-legislacion-colombiana/resolucion-40666-de-agosto-20-de-2019

    C. Ballesteros Ormaechea, “Análisis comparativo de inversores fotovoltaicos de conexión a red con potencia igual o superior A 100 kW,” pp. 1–206, Feb. 2012. [Online]. Available: https://e-archivo.uc3m.es/bitstream/handle/10016/15497/PFC_Clara_Ormaechea_Ballesteros.pdf?sequence=1&isAllowed=y

    R. Herrera, “Modelado y caracterización de paneles fotovoltaicos,” pp. 1–84, May 2013. [Online]. Available: https://cimav.repositorioinstitucional.mx/jspui/bitstream/1004/2338/1/ROBERTO%20HERRERA%20SALCEDO.pdf

    ENERGEN, “Grupo Electrógeno Diesel New Holland END75,” pp. 1–3. [Online]. Available: https://energen.com.ar/static/uploads/pdf/ficha-grupo-electrogeno-diesel-new-holland-end75.pdf

    ENERGEN, “Grupo Electrógeno Diesel New Holland END175,” pp. 1–3. [Online]. Available: https://energen.com.ar/static/uploads/pdf/ficha-grupo-electrogeno-diesel-new-holland-end175.pdf

    ENERGEN, “Grupo electrógeno modelo CS375 SILENT,” pp. 1–3.[Online]. Available: https://energen.com.ar/static/uploads/pdf/grupo-electrogeno-diesel-cummins-cs375s-ficha-tecnica.pdf

    ENERGEN, “Grupo Electrógeno Diesel Cummins ECD100,” p. 1.[Online]. Available: https://energen.com.ar/static/uploads/pdf/ficha-grupo-electrogeno-diesel-cummins-ecd100.pdf

    Perkins, “104C-44G/TG/TAG Electric Power Engines,” pp. 1–3, 2021. [Online]. Available: https://s7d2.scene7.com/is/content/Caterpillar/CM20210301-71b53-158d1?_ga=2.194474605.1534224682.1652836648-929468592.1652474381

    Perkins, “106D-E70TAG Electric Power Engines,” pp. 1–3, 2021. [Online]. Available: https://s7d2.scene7.com/is/content/Caterpillar/CM20210126-a40e3-cffa5?_ga=2.197992047.1534224682.1652836648-929468592.1652474381

    Cummins, “NTA855-G2A,” p. 1, Accessed: May 18, 2022. [Online]. Available: http://www.enginecummins.com/es/cummins-nta855-g2a.html

    O. T. Laseinde and M. D. Ramere, “Efficiency Improvement in polycrystalline solar panel using thermal control water spraying cooling,” Procedia Comput Sci, vol. 180, pp. 239–248, 2021. doi: 10.1016/j.procs.2021.01.161.

    L. T. Scarabelot, C. R. Rambo, and G. A. Rampinelli, “A relative power-based adaptive hybrid model for DC/AC average inverter efficiency of photovoltaics systems,” Renewable and Sustainable Energy Reviews, vol. 92, pp. 470–477, Sep. 2018. doi: 10.1016/j.rser.2018.04.099.

    B. Gu, J. Dominic, J.-S. Lai, C.-L. Chen, T. LaBella, and B. Chen, “High Reliability and Efficiency Single-Phase Transformerless Inverter for Grid-Connected Photovoltaic Systems,” IEEE Trans Power Electron, vol. 28, no. 5, pp. 2235–2245, May 2013. doi: 10.1109/TPEL.2012.2214237.

    Ministerio de Minas y Energía, “Comisión de regulación de energía y gas Resolución N° 091 de 2007,” p. 16, 2007. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/0816582ddafcf8110525785a007a6fa4/$FILE/Creg091-2007.pdf

    MÉTRICAS
    ARTICLE VIEWS: 567
    PDF VIEWS: 279
    Metrics
    Metrics Loading ...
    https://plu.mx/plum/a/?doi=10.16925/2357-6014.2022.03.04