• Review Article

    Microdevices

    Vol. 18 No. 3 (2022)
    Published: 2022-09-12

    tools for medical applications

    John Euler Chamorro Fuertes
    Universidad del Cauca
    Oscar Andrés Vivas Albán
    Universidad del Cauca

    Abstract: This article reviews the literature on the latest advances in microdevices for medical applications. The objective is to show an overview of the latest devices and their applications, as well as future development vectors in the area. A search of about 170 articles was performed, most of them published between the years 2015 and 2021, of which 53 were chosen as they were the most topical and impactful in the research fields referred to drug delivery, minimally invasive surgery, and cranial and vascular intromissions. It is concluded that, although microdevices are at an advanced stage of research, they still have many challenges to be solved, which has not allowed clinical trials to be completed in many cases. One of the great challenges ahead is to increase the precision in locomotion and to make the devices capable of performing more complex tasks with the help of smaller-scale electronic devices.

    Keywords: microdevices, microrobots, minimally invasive surgery, drug delivery, cranial instrusions, nanorobots, vascular intrusions

    How to Cite

    [1]
    J. E. Chamorro Fuertes and O. A. Vivas Albán, “Microdevices: tools for medical applications”, ing. Solidar, vol. 18, no. 3, pp. 1–24, Sep. 2022, doi: 10.16925/2357-6014.2022.03.11.

    Shibata, J., Ishihara, S., Tada, N., Kawai, K., Tsuno, N., Yamaguchi, H., Sunami, E., Kitayama, J., and Watanabe, T. “Surgical stress response after colorectal resection: a comparison of robotic, laparoscopic, and open surgery,” Techniques in Coloproctology, vol. 19, no. 5, pp. 275–280, Mayo 2015. DOI: https://doi.org/10.1007/s10151-014-1263-4. Available: https://link.springer.com/article/10.1007/s10151-014-1263-4

    Li, J., Ávila, E., Gao, W., Zhang, L., and Wang, J. “Micro/nanorobots for Biomedicine: Delivery, surgery, sensing, and detoxification,” Science Robotics, vol. 2, no. 4, Marzo 2017. DOI: 10.1126/scirobotics.aam6431. Available: https://www.science.org/doi/abs/10.1126/scirobotics.aam6431

    Nezhat, C. and Lakhi, N. “Learning Experiences in Robotic-Assisted Laparoscopic Surgery,” Best Practice & Research Clinical Obstetrics & Gynaecology, vol. 35, pp. 20–29, Agosto 2016. DOI: https://doi.org/10.1016/j.bpobgyn.2015.11.009. Available: https://www.sciencedirect.com/science/article/abs/pii/S1521693415002217

    Simaan, N., Yasin, R., and Wang, L. “Medical Technologies and Challenges of Robot-Assisted Minimally Invasive Intervention and Diagnostics,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, no. 1, pp. 465–490, Mayo 2018. DOI: https://doi.org/10.1146/annurev-control-060117-104956. Available: https://www.annualreviews.org/doi/abs/10.1146/annurev-control-060117-104956

    Sitti, M., Ceylan, H., Hu, W., Giltinan, J., Turan, M., Yim, S., and Diller, E. “Biomedical Applications of Untethered Mobile Milli/Microrobots,” Proceedings of the IEEE, vol. 103, no. 2, pp. 205–224, Febrero 2015. DOI: 10.1109/JPROC.2014.2385105. Available: https://ieeexplore.ieee.org/abstract/document/7067029

    Wang, J. and Gao, W. “Nano/microscale motors: Biomedical opportunities and challenges,” ACS Nano, vol. 6, no. 7. pp. 5745–5751, Julio 2012. DOI: https://doi.org/10.1021/nn3028997. Available: https://pubs.acs.org/doi/abs/10.1021/nn3028997

    Montero, A., Hervás, A., Morera, R., Sancho, S., Córdoba, S., Corona, J. A., and Ramos, A. “Control de síntomas crónicos: Efectos secundarios del tratamiento con Radioterapia y Quimioterapia”. Oncología (Barcelona), 28(3), 41-50. 2005. Available: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=s0378-48352005000300008

    Freeman, A. I., and Mayhew, E. “Targeted drug delivery”. Cancer, 58(S2), 573-583. 1986. DOI: https://doi.org/10.1002/1097-0142(19860715)58:2+<573::AID-CNCR2820581328>3.0.CO;2-C. Available: https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.1002/1097-0142(19860715)58:2+%3C573::AID-CNCR2820581328%3E3.0.CO;2-C

    Chen, Y., Kosmas, P., and Wang, R. “Conceptual design and simulations of a nano-communication model for drug delivery based on a transient microbot system,” The 8th European Conference on Antennas and Propagation, 2014, pp. 63-67, DOI: 10.1109/EuCAP.2014.6901693. Available: https://ieeexplore.ieee.org/document/6901693

    Chahibi, Y., Pierobon, M., Song, S., and Akyildiz, I. “A molecular communication system model for particulate drug delivery systems,” IEEE Trans. Biomed. Eng., vol. 60, no. 12, pp. 3468–3483, Dec. 2013. DOI: 10.1109/TBME.2013.2271503. Available: https://ieeexplore.ieee.org/abstract/document/6548006

    Chen, Y., Kosmas, P., Anwar, P. S., and Huang, L. “A touch-communication framework for drug delivery based on a transient microbot system”. IEEE transactions on nanobioscience, vol. 14, no. 4, pp. 397-408, June 2015, DOI: 10.1109/TNB.2015.2395539. DOI: 10.1109/TNB.2015.2395539. Available: https://ieeexplore.ieee.org/abstract/document/7021884

    Day, P., Eason, E. V., Esparza, N., Christensen, D., and Cutkosky, M. “Microwedge machining for the manufacture of directional dry adhesives” Journal of Micro and Nano-Manufacturing, 1(1). 2013. DOI: https://doi.org/10.1115/1.4023161. Available: https://asmedigitalcollection.asme.org/micronanomanufacturing/article-abstract/1/1/011001/366859/Microwedge-Machining-for-the-Manufacture-of

    Christensen, D. L., Hawkes, E. W., Suresh, S. A., Ladenheim, K., and Cutkosky, M. R. “μTugs: Enabling microrobots to deliver macro forces with controllable adhesives”. In 2015 IEEE International Conference on Robotics and Automation (ICRA) (pp. 4048-4055). IEEE. 2015. DOI: 10.1109/ICRA.2015.7139765. Available: https://ieeexplore.ieee.org/abstract/document/7139765

    Yue, C., Guo, S., Li, M., and Li, Y. “Characteristics evaluation of a biomimetic microrobot for a father-son underwater intervention robotic system”. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 171-176). IEEE. 2015. DOI: 10.1109/IROS.2015.7353370. Available: https://ieeexplore.ieee.org/abstract/document/7353370

    Iddan, G., Meron, G., Glukhovsky, A., and Swain, P. “Wireless capsule endoscopy”. Nature, 405(6785), 417-417. 2000. DOI: 10.1038/35013140.

    Pennazio M. “Capsule endoscopy: where are we after 6 years of clinical use?” Dig Liver Dis 38, 867-878. 2006. DOI: https://doi.org/10.1016/j.dld.2006.09.007. Available: https://www.sciencedirect.com/science/article/abs/pii/S1590865806005019

    Rey JF, Ogata H, Hosoe N. “Blinded nonrandomized comparative study of gastric examination with a magnetically guided capsule endoscope and standard videoendoscope”. Gastrointest Endosc. 2012;75(2):373–81. DOI: https://doi.org/10.1016/j.gie.2011.09.030. Available: https://www.sciencedirect.com/science/article/abs/pii/S0016510711022188

    Liao Z, Duan XD, Xin L. “Feasibility and safety of magnetic-controlled capsule endoscopy system in examination of human stomach: a pilot study in healthy volunteers”. J Interv Gastroenterol. 2012;2(4):155–60. DOI: 10.4161/jig.23751. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3655386/

    Rahman M, Akerman S, DeVito B, “Comparison of the diagnostic yield and outcomes between standard 8 h capsule endoscopy and the new 12 h capsule endoscopy for investigating small bowel pathology”. World J Gastroenterol. 2015;21(18):5542–7. DOI: 10.3748/wjg.v21.i18.5542. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427676/

    Farhadi, H., Atai, J., Skoglund, M., Nadimi, E. S., Pahlavan, K., and Tarokh, V. “An adaptive localization technique for wireless capsule endoscopy”. In 2016 10th International Symposium on Medical Information and Communication Technology (ISMICT) (pp. 1-5). IEEE. 2016. DOI: 10.1109/ISMICT.2016.7498884. Available: https://ieeexplore.ieee.org/abstract/document/7498884

    Dong, X., and Sitti, M. “Planning spin-walking locomotion for automatic grasping of microobjects by an untethered magnetic microgripper”. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 6612-6618). IEEE. 2017. DOI: 10.1109/ICRA.2017.7989782. Available: https://ieeexplore.ieee.org/abstract/document/7989782

    Seliktar, D. “Designing Cell-Compatible Hydrogels for Biomedical Applications”. Science, 336, 1124-1128. 2012. DOI: 10.1126/science.1214804. Available: https://www.science.org/doi/abs/10.1126/science.1214804

    Dong, X., and Sitti, M. “Planning spin-walking locomotion for automatic grasping of microobjects by an untethered magnetic microgripper”. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 6612-6618). IEEE. 2017. DOI: 10.1109/ICRA.2017.7989782. Available: https://ieeexplore.ieee.org/abstract/document/7989782

    Zhang, L., Huang, H., Chen, L., Li, X., Li, Y., and Huang, J. “A magnetically controlled micro-robot with multiple side flagella”. In 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (pp. 544-549). IEEE. 2017. DOI: 10.1109/NEMS.2017.8017081. Available: https://ieeexplore.ieee.org/abstract/document/8017081

    Jeong, S., Choi, H., Cha, K., Li, J., Park, J., and Park, S. “Enhanced locomotive and drilling microrobot using precessional and gradient magnetic field,” Sens. Actuators Phys., vol. 171, no. 2, pp. 429–435, Nov. 2011. DOI: https://doi.org/10.1016/j.sna.2011.08.020. Available: https://www.sciencedirect.com/science/article/abs/pii/S092442471100505X

    Jeon, S., Jang, G., and Lee, W. S. “Drug-enhanced unclogging motions of a double helical magnetic micromachine for occlusive vascular diseases,” IEEE Trans. Magn., vol. 50, no. 11, pp. 1–4, Nov. 2014. DOI: 10.1109/TMAG.2014.2320580. Available: https://ieeexplore.ieee.org/abstract/document/6971520

    Kim, S. H., and Ishiyama, K. “Magnetic robot and manipulation for active-locomotion with targeted drug release,” IEEE/ASME Trans. Mechatron., vol. 19, no. 5, pp. 1651–1659, Oct. 2014. DOI: 10.1109/TMECH.2013.2292595. Available: https://ieeexplore.ieee.org/abstract/document/6679255

    Nam, J., Lee, W., Kim, J., and Jang, G. “Magnetic helical robot for targeted drug-delivery in tubular environments”. IEEE/ASME Transactions on Mechatronics, 22(6), 2461-2468. 2017. DOI: 10.1109/TMECH.2017.2761786. Available: https://ieeexplore.ieee.org/abstract/document/8063941

    Leclerc, J., Ramakrishnan, A., Tsekos, N. V., and Becker, A. T. “Magnetic hammer actuation for tissue penetration using a millirobot”. IEEE Robotics and Automation Letters, 3(1), 403-410. 2017. DOI: 10.1109/LRA.2017.2739805. Available: https://ieeexplore.ieee.org/abstract/document/8010400

    Wang, X., Cai, J., Sun, L., Zhang, S., Gong, D., Li, X., and Zhang, D. “Facile fabrication of magnetic microrobots based on spirulina templates for targeted delivery and synergistic chemo-photothermal therapy”. ACS applied materials & interfaces, 11(5), 4745-4756. 2019. DOI: https://doi.org/10.1021/acsami.8b15586. Available: https://pubs.acs.org/doi/abs/10.1021/acsami.8b15586

    Feng, Y., Feng, L., Dai, Y., Bai, X., Zhang, C., Chen, Y., and Arai, F. “A novel and controllable cell-based microrobot in real vascular network for target tumor therapy”. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2828-2833). IEEE. 2020. DOI: 10.1109/IROS45743.2020.9341774. Available: https://ieeexplore.ieee.org/abstract/document/9341774

    Zhang, K., Qiu, C., and Dai, J. S. “An extensible continuum robot with integrated origami parallel modules”. Journal of Mechanisms and Robotics, 8(3), 031010. 2016. DOI: https://doi.org/10.1115/1.4031808. Available: https://asmedigitalcollection.asme.org/mechanismsrobotics/article-abstract/8/3/031010/441832/An-Extensible-Continuum-Robot-With-Integrated

    Salerno, M., Zhang, K., Menciassi, A., and Dai, J. S. “A novel 4-DOF origami grasper with an SMA-actuation system for minimally invasive surgery”. IEEE Transactions on Robotics, 32(3), 484-498. 2016. DOI: 10.1109/TRO.2016.2539373. Available: https://ieeexplore.ieee.org/abstract/document/7452410

    Dai, Y., Chen, D., Liang, S., Song, L., Qi, Q., and Feng, L. “A magnetically actuated octopus-like robot capable of moving in 3D space”. In 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 2201-2206). IEEE. 2019. DOI: 10.1109/ROBIO49542.2019.8961461. Available: https://ieeexplore.ieee.org/abstract/document/8961461

    Kummer, M. P., Abbott, J. J., Kratochvil, B. E., Borer, R., Sengul, A., and Nelson, B. J. “OctoMag: An electromagnetic system for 5-DOF wireless micromanipulation”. IEEE Transactions on Robotics, 26(6), 1006-1017. 2010. DOI: 10.1109/TRO.2010.2073030. Available: https://ieeexplore.ieee.org/abstract/document/5595508

    Wu, Z., Troll, J., Jeong, H. H., Wei, Q., Stang, M., Ziemssen, F., and Fischer, P. “A swarm of slippery micropropellers penetrates the vitreous body of the eye”. Science advances, 4(11), eaat4388. 2018. DOI: 10.1126/sciadv.aat4388. Available: https://www.science.org/doi/full/10.1126/sciadv.aat4388

    Xu, T., Hwang, G., Andreff, N., & Régnier, S. “Planar path following of 3-D steering scaled-up helical microswimmers”. IEEE Transactions on Robotics, 31(1), 117-127. 2015. DOI: 10.1109/TRO.2014.2380591. Available: https://ieeexplore.ieee.org/abstract/document/7015549

    Manamanchaiyaporn, L., Xu, T., & Wu, X. “The Hybrid system with a large workspace towards magnetic micromanipulation within the human head”. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 401-407). IEEE. 2017. DOI: 10.1109/IROS.2017.8202186. Available: https://ieeexplore.ieee.org/abstract/document/8202186

    Santamaria, G., Brandi, E., Vitola, and P.L. "Intranasal delivery of mesenchymal stem cell secretome repairs the brain of Alzheimer’s mice." Cell Death & Differentiation 28. 203–218 (2021). DOI: https://doi.org/10.1038/s41418-020-0592-2. Available: https://www.nature.com/articles/s41418-020-0592-2

    Yun WS, Choi JS, Ju HM, Kim MH, Choi SJ, Oh ES, Seo YJ, and Key J. "Enhanced homing technique of mesenchymal stem cells using iron oxide nanoparticles by magnetic attraction in olfactory-injured mouse models." International Journal of Molecular Sciences 19.5 (2018): 1376. DOI: https://doi.org/10.3390/ijms19051376. Available: https://www.mdpi.com/1422-0067/19/5/1376

    Yung Jin Yoon, Yun Seop Shin, Hyungsu Jang, Jung Geon Son, Jae Won Kim, Chan Beom Park, Dohun Yuk, Jongdeuk Seo, Gi-Hwan Kim, and Jin Young Kim. "Highly stable bulk perovskite for blue LEDs with anion-exchange method." Nano Letters 21. (2021): 3473-3479. DOI: https://doi.org/10.1021/acs.nanolett.1c00124. Available: https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.1c00124

    Jeon, S., Park, S. H., Kim, E., Kim, J. Y., Kim, S. W., and Choi, H. “A Magnetically Powered Stem Cell‐Based Microrobot for Minimally Invasive Stem Cell Delivery via the Intranasal Pathway in a Mouse Brain”. Advanced Healthcare Materials, 10(19), 2100801. 2021. DOI: https://doi.org/10.1002/adhm.202100801. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.202100801

    Aneurismas Cerebrales: Conozca la Realidad y las Opciones de Tratamiento. Baptist Healt. Available on: https://baptisthealth.net/baptist-health-news/es/aneurismas-cerebrales-conozca-la-realidad-y-las-opciones-de-tratamiento/#:~:text=Anualmente%2C%20suceden%20casi%20500%2C000%20muertes,son%20menores%20de%2050%20a%C3%B1os. Accessed on April 1 of 2022.

    Bakenecker, A. C., von Gladiss, A., Schwenke, H., Behrends, A., Friedrich, T., Lüdtke-Buzug, K., and Buzug, T. M. “Navigation of a magnetic micro-robot through a cerebral aneurysm phantom with magnetic particle imaging”. Scientific reports, 11(1), 1-12. 2021. DOI: https://doi.org/10.1038/s41598-021-93323-4. Available: https://www.nature.com/articles/s41598-021-93323-4

    Saito S, Tanaka S, Hiroe Y, Miyashita Y, Takahashi S, Satake S, and Tanaka K. “Angioplasty for chronic total occlusion by using tapered-tip guidewires,” Catheterization Cardiovascular Intervent., vol. 59, no. 3, pp. 305–311, 2003. DOI: https://doi.org/10.1002/ccd.10505. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/ccd.10505

    Kuon, E., Schmitt, M., and Dahm, J. B. “Significant reduction of radiation exposure to operator and staff during cardiac interventions by analysis of radiation leakage and improved lead shielding,” Amer. J. Cardiol., vol. 89, no. 1, pp. 44–49, 2002. DOI: https://doi.org/10.1016/S0002-9149(01)02161-0. Available: https://www.sciencedirect.com/science/article/abs/pii/S0002914901021610

    Jang, G. B., Jeon, S., Nam, J., Lee, W., and Jang, G. “A spiral microrobot performing navigating linear and drilling motions by magnetic gradient and rotating uniform magnetic field for applications in unclogging blocked human blood vessels”. IEEE Transactions on Magnetics, 51(11), 1-4. 2015. DOI: 10.1109/TMAG.2015.2436913. Available: https://ieeexplore.ieee.org/abstract/document/7112155

    Kong, D., and Kurosawa, M. K. “A novel swimmer actuator via leaky surface acoustic wave”. In 2018 IEEE International Ultrasonics Symposium (IUS) (pp. 1-4). IEEE. 2018. DOI: 10.1109/ULTSYM.2018.8579910. Available: https://ieeexplore.ieee.org/abstract/document/8579910

    Palagi, S., Mark, A. G., Reigh, S. Y., Melde, K., Qiu, T., Zeng, H., and Fischer, P. “Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots”. Nature materials, 15(6), 647-653. 2016. DOI: https://doi.org/10.1038/nmat4569. Available: https://www.nature.com/articles/nmat4569

    Iacovacci, V., Ricotti, L., Signore, G., Vistoli, F., Sinibaldi, E., Menciassi, A. “Retrieval of magnetic medical microrobots from the bloodstream”. In 2019 International Conference on Robotics and Automation (ICRA) (pp. 2495-2501). IEEE. 2019. DOI: 10.1109/ICRA.2019.8794322. Available: https://ieeexplore.ieee.org/abstract/document/8794322

    Ceylan, H., Yasa, I. C., Yasa, O., Tabak, A. F., Giltinan, J., and Sitti, M. "3D-Printed Biodegradable Microswimmer for Drug Delivery and Targeted Cell Labeling," bioRxiv, p. 379024, 2018. DOI: https://doi.org/10.1101/379024. Available: https://www.biorxiv.org/content/10.1101/379024v1.abstract

    Wang, X. H. Qin, C. Hu, A. Terzopoulou, X. Z. Chen, T. Y. Huang, "3D Printed Enzymatically Biodegradable Soft Helical Microswimmers," Advanced Functional Materials, p. 1804107, 2018. DOI: https://doi.org/10.1002/adfm.201804107. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201804107

    MÉTRICAS
    ARTICLE VIEWS: 390
    PDF VIEWS: 332
    Metrics
    Metrics Loading ...
    https://plu.mx/plum/a/?doi=10.16925/2357-6014.2022.03.11