• Research Articles

    Non-explosive training Grenade for the Schools of the Colombian Military Forces and Police

    Vol. 17 No. 2 (2021)
    Published: 2021-05-05
    Fabián Garay-Rairán
    Escuela de Suboficiales y Nivel Ejecutivo de la Policía Nacional de Colombia
    Diego Mauricio Parra Laguna
    Escuela Militar de Suboficiales del Ejército Nacional de Colombia
    Nathalie Tarazona
    Escuela Militar de Suboficiales del Ejército Nacional de Colombia
    Julián Conde
    Escuela Militar de Suboficiales del Ejército Nacional de Colombia
     
    Introduction: The paper is a product of the research “Non-explosive training grenade Design for the practice and launch exercise in the training schools of Colombian military forces” carried out in the Escuela Militar de Suboficiales during 2017 and 2020.
     
    Problem: Material mishandling during training sessions can lead directly to the injury of training personnel.
     
    Objective: The research aims to design a Non-explosive training grenade to avoid accidents during launching exercises in the training schools of the Colombian military forces and Police.
     
    Methodology:The transmission and reception elements, display, and sounds items were implemented through electronic devices, seeking to obtain a device that mimics the original grenade during training exercises; the IM 26.
     
    Results:12 prototypes of low-cost non-explosive training grenades were built for the market in ABS material with triggers and ejectors in steel, which emulate, in dimension and weight, a real IM26 grenade.
     
    Conclusion:The prototype meets the minimum usage, size, and mass requirements that emulate the original, the time after being primed, and the execution sound after being released.
     
    Originality:These unique prototypes in Colombia allow mitigating possible incidents in the training school’s grenade-throwing exercises.
     
    Limitations:The transmission and reception modules (433 MHz) did not have enough power to transmit the data over a range greater than 50 m; the radiofrequency system SYNAPSE was used.
    Keywords: grenade, emulation, non-explosive, radiofrequency, training

    How to Cite

    [1]
    F. . Garay Rairán, D. M. Parra Laguna, N. Tarazona, and J. . Conde, “Non-explosive training Grenade for the Schools of the Colombian Military Forces and Police”, ing. Solidar, vol. 17, no. 2, pp. 1–26, May 2021, doi: 10.16925/2357-6014.2021.02.03.

    Ampuła, D.: Application of Neural Networks in the Tests of Hand Grenade Fuses. Bull. Mil. Univ. Technol. 68, 1, 197–212 (2019). https://doi.org/10.5604/01.3001.0013.1480.

    Aznar Díaz, I. et al.: La tecnología móvil de Realidad Virtual en educación: una revisión del estado de la literatura científica en España. EDMETIC. 7, 1, 256 (2018). https://doi.org/10.21071/edmetic.v7i1.10139.

    Campagnuolo, C.J. et al.: US5246372A - Training grenade, https://patents.google.com/patent/US5246372, (2010).

    Chen, D. et al.: SmokeGrenade: A key generation protocol with artificial interference in wireless networks. In: Proceedings - IEEE 10th International Conference on Mobile Ad-Hoc and Sensor Systems, MASS 2013. pp. 200–208 (2013). https://doi.org/10.1109/MASS.2013.73.

    E.W. Eidson, US5018449A - Paint dispersing training grenade, https://patents.google.com/patent/US5018449A/en?oq=Paint+dispersing+training+grenade+(US5018449A), (2008).

    E.A. Filippi, US3492945A - Practice grenade. [Online]. Available: https://patents.google.com/patent/US3492945, (1987).

    V. Grabe, S.T. Nuske, “Long distance visual ground-based signaling for unmanned aerial ve-hicles,” in: IEEE International Conference on Intelligent Robots and Systems. pp. 4976–4983 Institute of Electrical and Electronics Engineers Inc. (2016), doi: https://doi.org/10.1109/IROS.2016.7759731.

    V.B. Gromov, et al. RU55462U1 - LIGHT SOUND Grenade (OPTIONS). [Online]. Available: https://patents.google.com/patent/RU55462U1/en?q=Light+sound+grenade&oq=Light +and+sound+grenade+.

    HFI Pyrotechnics Inc, M116A1 - Simulator Hand Grenade, Prescott (2020).

    Indumil, Granada IMC MG M26 HE – Indumil. [Online]. Available: https://www.indumil.gov.co/product/granada-imc-mg-m26-he/

    D. Martins, et al., “Caracterización de las propiedades mecánicas de los cuerpos de prueba ABS confeccionados con diferentes parámetros de extrusión vía impresión 3D,” Rev. Iberoam. Polímeros., vol. 17, pp. 303–309, 2016.

    S. Min, S. Lee, “Developing Vehicle-launched Smoke Grenade M&S of Moderate-resolution for Applications in Engagement Simulation,” J. Korea Soc. Simul., vol. 28, no. 2, pp. 59–69. 2019, doi https://doi.org/10.9709/JKSS.2019.28.2.059.

    P.A. Osorio Villa, et al., “El Uso de Simuladores Educativos para el Desarrollo de Competencias en la Formación Universitaria de Pregrado,” Rev. Q., vol. 7, no. 13, pp. 1–23. 2012.

    D.E. Rojas-Ballesteros, et al., “Mobile Classroom for Military Tactical Training in Cavalry Mission Planning,” Ing. Solidar., vol. 15, no. 29, pp. 1–20. 2019. https://doi.org/10.16925/2357-6014.2019.03.11.

    Saab Defense and Security, HGS2 Hand Grenade Simulator User Manual. (2016).

    Synapse Wireless®, Synapse RF200PD1 Engine. (2013).[17] S.K. Yoo, et al., A Methodology for Effectiveness Analysis of Future Weapon System Using a PLAF Based Simulation System. (2012), doi: https://doi.org /10.1007/978-4-431-54216-2_37.

    S.K. Yoo, et al., A Methodology for Effectiveness Analysis of Future Weapon System Using a PLAF Based Simulation System. (2012), doi: https://doi.org/10.1007/978-4-431-54216-2_37.

    a] Zen Technologies Limited, Hand Grenade Simulator (HE36S®). [Online]. Available: https://www.zentechnologies.com/zen_hand_grenade_simulator.html

    b] C.M. R. Sánchez, C.J. Cortés, “Rapid casting y nuevas tecnologías en el proceso de microfundición,” Ingeniería e Investigación, vol. 26, no. 1, pp. 110-119. 2006. [Online]. Available: http://www.scie-lo.org.co/scielo.php?script=sci_arttext&pid=S0120-56092006000100014&lng=en&tlng=es.

    I.A. Domínguez, L. Romero, M.M. Espinosa, M. Domínguez, “Impresión 3D de maquetas y pro-totipos en arquitectura y construcción,” Revista de la construcción, vol. 12, no. 2, pp. 39-53, doi: https://dx.doi.org/10.4067/S0718-915X2013000200004

    D. Juarez Varón, R. Balart Gimeno, S. Ferrándiz Bou, M.A. Peydró Rasero, “Estudio y análisis del moldeo por inyección de materiales poliméricos termoplásticos,” 3C Tecnología. Glosas De Innovación Aplicadas a La Pyme, vol. 1, no. 3. [Online]. Available: http://ojs.3ciencias.com/index.php/3c-tecnologia/article/view/79

    O. Schinagl, Getting Started with Cubieboard, Birmingham B3 2PB, UK, Pack Open Source.

    J. V. Molina Osejo, Caracterización de materiales termoplásticos de ABS y PLA semi - rígido impresos en 3D con cinco mallados internos diferentes. Quito: EPN. 2016.

    G. Echeverry Vásquez, Y. Cabezas Burbano, N. Olarte López, “Normatividad para las frecuen-cias ISM orientada hacia aplicaciones de dispositivos Xbee-802.15.4-Pro.,” INGE CUC, vol. 10, no. 2, pp. 81 - 90. [Online]. Available:

    https://revistascientificas.cuc.edu.co/ingecuc/article/view/494

    MÉTRICAS
    ARTICLE VIEWS: 437
    PDF VIEWS: 367
    Metrics
    Metrics Loading ...
    https://plu.mx/plum/a/?doi=10.16925/2357-6014.2021.02.03