Non-explosive training Grenade for the Schools of the Colombian Military Forces and Police
How to Cite
License
Copyright (c) 2021 Ingeniería Solidaria

This work is licensed under a Creative Commons Attribution 4.0 International License.
Cession of rights and ethical commitment
As the author of the article, I declare that is an original unpublished work exclusively created by me, that it has not been submitted for simultaneous evaluation by another publication and that there is no impediment of any kind for concession of the rights provided for in this contract.
In this sense, I am committed to await the result of the evaluation by the journal Ingeniería Solidaría before considering its submission to another medium; in case the response by that publication is positive, additionally, I am committed to respond for any action involving claims, plagiarism or any other kind of claim that could be made by third parties.
At the same time, as the author or co-author, I declare that I am completely in agreement with the conditions presented in this work and that I cede all patrimonial rights, in other words, regarding reproduction, public communication, distribution, dissemination, transformation, making it available and all forms of exploitation of the work using any medium or procedure, during the term of the legal protection of the work and in every country in the world, to the Universidad Cooperativa de Colombia Press.
Ampuła, D.: Application of Neural Networks in the Tests of Hand Grenade Fuses. Bull. Mil. Univ. Technol. 68, 1, 197–212 (2019). https://doi.org/10.5604/01.3001.0013.1480.
Aznar Díaz, I. et al.: La tecnología móvil de Realidad Virtual en educación: una revisión del estado de la literatura científica en España. EDMETIC. 7, 1, 256 (2018). https://doi.org/10.21071/edmetic.v7i1.10139.
Campagnuolo, C.J. et al.: US5246372A - Training grenade, https://patents.google.com/patent/US5246372, (2010).
Chen, D. et al.: SmokeGrenade: A key generation protocol with artificial interference in wireless networks. In: Proceedings - IEEE 10th International Conference on Mobile Ad-Hoc and Sensor Systems, MASS 2013. pp. 200–208 (2013). https://doi.org/10.1109/MASS.2013.73.
E.W. Eidson, US5018449A - Paint dispersing training grenade, https://patents.google.com/patent/US5018449A/en?oq=Paint+dispersing+training+grenade+(US5018449A), (2008).
E.A. Filippi, US3492945A - Practice grenade. [Online]. Available: https://patents.google.com/patent/US3492945, (1987).
V. Grabe, S.T. Nuske, “Long distance visual ground-based signaling for unmanned aerial ve-hicles,” in: IEEE International Conference on Intelligent Robots and Systems. pp. 4976–4983 Institute of Electrical and Electronics Engineers Inc. (2016), doi: https://doi.org/10.1109/IROS.2016.7759731.
V.B. Gromov, et al. RU55462U1 - LIGHT SOUND Grenade (OPTIONS). [Online]. Available: https://patents.google.com/patent/RU55462U1/en?q=Light+sound+grenade&oq=Light +and+sound+grenade+.
HFI Pyrotechnics Inc, M116A1 - Simulator Hand Grenade, Prescott (2020).
Indumil, Granada IMC MG M26 HE – Indumil. [Online]. Available: https://www.indumil.gov.co/product/granada-imc-mg-m26-he/
D. Martins, et al., “Caracterización de las propiedades mecánicas de los cuerpos de prueba ABS confeccionados con diferentes parámetros de extrusión vía impresión 3D,” Rev. Iberoam. Polímeros., vol. 17, pp. 303–309, 2016.
S. Min, S. Lee, “Developing Vehicle-launched Smoke Grenade M&S of Moderate-resolution for Applications in Engagement Simulation,” J. Korea Soc. Simul., vol. 28, no. 2, pp. 59–69. 2019, doi https://doi.org/10.9709/JKSS.2019.28.2.059.
P.A. Osorio Villa, et al., “El Uso de Simuladores Educativos para el Desarrollo de Competencias en la Formación Universitaria de Pregrado,” Rev. Q., vol. 7, no. 13, pp. 1–23. 2012.
D.E. Rojas-Ballesteros, et al., “Mobile Classroom for Military Tactical Training in Cavalry Mission Planning,” Ing. Solidar., vol. 15, no. 29, pp. 1–20. 2019. https://doi.org/10.16925/2357-6014.2019.03.11.
Saab Defense and Security, HGS2 Hand Grenade Simulator User Manual. (2016).
Synapse Wireless®, Synapse RF200PD1 Engine. (2013).[17] S.K. Yoo, et al., A Methodology for Effectiveness Analysis of Future Weapon System Using a PLAF Based Simulation System. (2012), doi: https://doi.org /10.1007/978-4-431-54216-2_37.
S.K. Yoo, et al., A Methodology for Effectiveness Analysis of Future Weapon System Using a PLAF Based Simulation System. (2012), doi: https://doi.org/10.1007/978-4-431-54216-2_37.
a] Zen Technologies Limited, Hand Grenade Simulator (HE36S®). [Online]. Available: https://www.zentechnologies.com/zen_hand_grenade_simulator.html
b] C.M. R. Sánchez, C.J. Cortés, “Rapid casting y nuevas tecnologías en el proceso de microfundición,” Ingeniería e Investigación, vol. 26, no. 1, pp. 110-119. 2006. [Online]. Available: http://www.scie-lo.org.co/scielo.php?script=sci_arttext&pid=S0120-56092006000100014&lng=en&tlng=es.
I.A. Domínguez, L. Romero, M.M. Espinosa, M. Domínguez, “Impresión 3D de maquetas y pro-totipos en arquitectura y construcción,” Revista de la construcción, vol. 12, no. 2, pp. 39-53, doi: https://dx.doi.org/10.4067/S0718-915X2013000200004
D. Juarez Varón, R. Balart Gimeno, S. Ferrándiz Bou, M.A. Peydró Rasero, “Estudio y análisis del moldeo por inyección de materiales poliméricos termoplásticos,” 3C Tecnología. Glosas De Innovación Aplicadas a La Pyme, vol. 1, no. 3. [Online]. Available: http://ojs.3ciencias.com/index.php/3c-tecnologia/article/view/79
O. Schinagl, Getting Started with Cubieboard, Birmingham B3 2PB, UK, Pack Open Source.
J. V. Molina Osejo, Caracterización de materiales termoplásticos de ABS y PLA semi - rígido impresos en 3D con cinco mallados internos diferentes. Quito: EPN. 2016.
G. Echeverry Vásquez, Y. Cabezas Burbano, N. Olarte López, “Normatividad para las frecuen-cias ISM orientada hacia aplicaciones de dispositivos Xbee-802.15.4-Pro.,” INGE CUC, vol. 10, no. 2, pp. 81 - 90. [Online]. Available:
https://revistascientificas.cuc.edu.co/ingecuc/article/view/494




