A new dynamic model of thermal degradation of polymer binary mixes submitted through pyrolysis

Main Article Content

Oscar Alexander Bellón-Hernández

Article Details

Section
Research Articles

Abstract

This paper shows the validation process of a dynamic model proposed to represent the one-step thermal degradation reaction of individual components in polymer mixtures. It is complicated to model the process of thermal degradation of polymer mixtures inside pyrolysis reactors. Inside the MPW reactor, the distribution of polymeric components in the mixture is shuffled. It occurs high-temperature gradients, and it is difficult to achieve a uniform heat transfer. All these factors make it complicated to predict at all times in the process and each point of the material inside reactor the degradation reactions and the specific presence of hydrocarbon of interest. It is made a comparison between real data provided by TGA of binary mixes of plastic and the result of simulated thermal degradation obtained using a differential equation of the model for thermal degradation of the same plastics. The polymer used in this study were Expanded Polystyrene (EPS) and Low-Density Polyethylene (HDPE). The results of the simulation using the dynamic model proposed were compared to the thermograms of the five samples submitted to TGA tests. The simulation results showed a reasonable degree of approximation with a mean square error of less than 5%. Those results well approximate the loss of mass of the real samples submitted to TGA tests in all the temperature range of the process. Consequently, it is not necessary to segment the process into sub-ranges to look for parameters in each one of them.

[1] D. K. A. Barnes, F. Galgani, R. C. Thompson, y M. Barlaz, «Accumulation and fragmentation of plastic debris in global environments», Philosophical Transactions of the Royal Society B: Biological Sciences, pp. 1985-1998, jul. 2009.
[2] C. Zhou, W. Fang, W. Xu, A. Cao, y R. Wang, «Characteristics and the recovery potential of plastic wastes obtained from landfill mining», Journal of Cleaner Production, vol. 80, pp. 80-86, oct. 2014, doi: 10.1016/j.jclepro.2014.05.083.
[3] R. Seymour, Applications of Polymers. Springer Science & Business Media, 2012.
[4] Y. Zheng, E. K. Yanful, y A. S. Bassi, «A Review of Plastic Waste Biodegradation», Critical Reviews in Biotechnology, vol. 25, n.o 4, pp. 243-250, ene. 2005, doi: 10.1080/07388550500346359.
[5] M. Samer, Pyrolysis. BoD – Books on Demand, 2017.
[6] F. Abnisa y W. M. A. Wan Daud, «A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil», Energy Conversion and Management, vol. 87, pp. 71-85, nov. 2014, doi: 10.1016/j.enconman.2014.07.007.
[7] S. L. Wong, N. Ngadi, T. A. T. Abdullah, y I. M. Inuwa, «Current state and future prospects of plastic waste as source of fuel: A review», Renewable and Sustainable Energy Reviews, vol. 50, pp. 1167-1180, oct. 2015, doi: 10.1016/j.rser.2015.04.063.
[8] R. Miandad, M. A. Barakat, A. S. Aburiazaiza, M. Rehan, I. M. I. Ismail, y A. S. Nizami, «Effect of plastic waste types on pyrolysis liquid oil», International Biodeterioration & Biodegradation, vol. 119, pp. 239-252, abr. 2017, doi: 10.1016/j.ibiod.2016.09.017.
[9] I. Ahmad et al., «Pyrolysis Study of Polypropylene and Polyethylene Into Premium Oil Products», International Journal of Green Energy, vol. 12, n.o 7, pp. 663-671, jul. 2015, doi: 10.1080/15435075.2014.880146.
[10] D. Chen, L. Yin, H. Wang, y P. He, «Reprint of: Pyrolysis technologies for municipal solid waste: A review», Waste Management, vol. 37, pp. 116-136, mar. 2015, doi: 10.1016/j.wasman.2015.01.022.
[11] S. D. Anuar Sharuddin, F. Abnisa, W. M. A. Wan Daud, y M. K. Aroua, «Energy recovery from pyrolysis of plastic waste: Study on non-recycled plastics (NRP) data as the real measure of plastic waste», Energy Conversion and Management, vol. 148, pp. 925-934, sep. 2017, doi: 10.1016/j.enconman.2017.06.046.
[12] S. D. A. Sharuddin, F. Abnisa, W. M. A. W. Daud, y M. K. Aroua, «A review on pyrolysis of plastic wastes», Energy Conversion and Management, vol. 115, pp. 308-326, 2016, doi: http://dx.doi.org/10.1016/j.enconman.2016.02.037.
[13] R. Aguado, M. Olazar, B. Gaisán, R. Prieto, y J. Bilbao, «Kinetics of polystyrene pyrolysis in a conical spouted bed reactor», Chemical Engineering Journal, vol. 92, n.o 1–3, pp. 91-99, abr. 2003, doi: 10.1016/S1385-8947(02)00119-5.
[14] C. Wu y P. T. Williams, «Pyrolysis–gasification of plastics, mixed plastics and real-world plastic waste with and without Ni–Mg–Al catalyst», Fuel, vol. 89, n.o 10, pp. 3022-3032, oct. 2010, doi: 10.1016/j.fuel.2010.05.032.
[15] C. Muhammad, J. A. Onwudili, y P. T. Williams, «Thermal Degradation of Real-World Waste Plastics and Simulated Mixed Plastics in a Two-Stage Pyrolysis–Catalysis Reactor for Fuel Production», mar. 25, 2015. https://pubs.acs.org/doi/abs/10.1021/ef502749h (accedido abr. 27, 2018).
[16] J. Li, J. Gong, y S. I. Stoliarov, «Development of pyrolysis models for charring polymers», Polymer Degradation and Stability, vol. 115, pp. 138-152, may 2015, doi: 10.1016/j.polymdegradstab.2015.03.003.
[17] A. N. García, A. Marcilla, y R. Font, «Thermogravimetric kinetic study of the pyrolysis of municipal solid waste», Thermochimica Acta, vol. 254, pp. 277-304, abr. 1995, doi: 10.1016/0040-6031(94)02002-6.
[18] Sohpal, Vipan Kumar, Singh, Amarpal, y Dey, Apurba, «Fuzzy Modeling to Evaluate the Effect of Temperature on Batch Transesterification of Jatropha Curcas or Biodiesel Production», Bulletin of Chemical Reaction Engineering & Catalysis, vol. 6, pp. 31-38, jun. 2011.
[19] Z. Ghorbani, R. Webster, M. Lázaro, y A. Trouvé, «Limitations in the predictive capability of pyrolysis models based on a calibrated semi-empirical approach», Fire Safety Journal, vol. 61, pp. 274-288, oct. 2013, doi: 10.1016/j.firesaf.2013.09.007.
[20] A. Niksiar y M. Sohrabi, «Mathematical Modeling of Waste Plastic Pyrolysis in Conical Spouted Beds: Heat, Mass, and Momentum Transport», Journal of Analytical and Applied Pyrolysis, pp. 66-78, doi: 10.1016/j.jaap.2014.08.005.
[21] M. L. Poutsma, «Mechanistic analysis and thermochemical kinetic simulation of the pathways for volatile product formation from pyrolysis of polystyrene, especially for the dimer», Polymer Degradation and Stability, vol. 91, n.o 12, pp. 2979-3009, dic. 2006, doi: 10.1016/j.polymdegradstab.2006.08.015.
[22] U. Hujuri, A. K. Ghoshal, y S. Gumma, «Modeling pyrolysis kinetics of plastic mixtures», Polymer Degradation and Stability, vol. 93, n.o 10, pp. 1832-1837, oct. 2008, doi: 10.1016/j.polymdegradstab.2008.07.006.
[23] O. A. B. Bellon Hernandez y E. de J. M. Prieto, «Obtención de modelo dinámico del proceso de pirólisis de polímeros utilizando datos de una termogravimetría», REVISTA POLITÉCNICA, vol. 13, n.o 25, pp. 53-64, sep. 2017, doi: 10.33571/rpolitec.v13n25a4.
[24] E. Ihms y D. Brinkman, «Thermogravimetric Analysis as a Polymer Identification Technique in Forensic Applications», Journal of forensic sciences, vol. 49, pp. 505-10, jun. 2004, doi: 10.1520/JFS2003252.
[25] R. A. Lafia-Araga, A. Hassan, R. Yahya, N. A. Rahman, P. R. Hornsby, y J. Heidarian, «Thermal and mechanical properties of treated and untreated Red Balau (Shorea dipterocarpaceae)/LDPE composites», Journal of Reinforced Plastics and Composites, vol. 31, n.o 4, pp. 215-224, feb. 2012, doi: 10.1177/0731684411433913.

DB Error: Unknown column 'Array' in 'where clause'