Technological trends A focus on citizen security

Main Article Content

LUIS ADRIAN LASSO CARDONA

Article Details

Section
Review Article

Abstract

Introduction: This bibliographic review article is the product of research on new technological trends, focusing on citizen security, carried out at the SIEL research hotbed of the Universidad del Valle-Buga headquarters, Colombia in 2019.


Problem: Investigate the new technological trends aimed at the citizen security sector.


Objective: Identify the new technological trends in the sector of citizen security, its application in the world and expose the current state in Colombia.


Methodology: Documentary review of primary sources of the last 5 years, such as; scientific articles, government pages, laws, press releases and recognized newspapers.


Results: Since MinTIC was created in Colombia, in partnership with different government entities, society in general has benefited from projects in areas such as education, health, housing and security. The modernization of control institutions in Colombia is evident being the security sector one of the most advantageous.


Conclusion: In general terms, sectors such as technology and education are still lagging behind. As for the security sector, there is no doubt the effort and progress in research and development of new technologies present in the vast majority of government entities.


Originality: new technological trends are investigated from the point of view of citizen security in several application scenarios.


Limitations: For the most part, the review focuses on aspects of citizen security, indicating very little the social field

[1] Hernández, E., Duque, N., & Moreno, C. J. (2017). Big Data: una exploración de investigaciones, tecnologías y casos de aplicación, TecnoLógicas; 20(39). http://www.scielo.org.co/pdf/teclo/v20n39/v20n39a02.pdf
[2] Sivarajah, U., Mustafa, M., Irani, Z. & Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods, Journal of Business Research; 70; 263-286. https://doi.org/10.1016/j.jbusres.2016.08.001
[3] Peña, A. (2017). Modelo para la Caracterización del Delito en la Ciudad de Bogotá, Aplicando Técnicas de Minería de Datos Espaciales. Tesis de Maestría. Universidad Distrital Francisco José de Caldas. Bogotá, Colombia. Recuperado de: http://repository.udistrital.edu.co/bitstream/11349/6519/1/Pe%C3%B1aSuarezAlfonso2017.pdf
[4] Pinto, R., Hernández, M., Pinzón, C., Díaz, D. & García, J. (2018). Inteligencia de fuentes abierta (OSINT) para operaciones de ciberseguridad. Aplicación de OSINT en un contexto colombiano y análisis de sentimientos. Revista Vínculos: Ciencia, Tecnología y Sociedad; 15(2); 195-214. https://revistas.udistrital.edu.co/index.php/vinculos/article/view/13504/14315
[5] Luo, J., Liu, J., Yang, K. & Fu, X. (2019). Big Data research guided by sociological theory: a triadic dialogue among big data analysis, theory, and predictive models. The Journal of Chinese Sociology; 6. https://doi.org/10.1186/s40711-019-0102-4
[6] Elpais.com.uy. (2017). Policía de Chicago usa Big Data para evitar crímenes antes de que ocurran. Periódico el País de Uruguay. Recuperado de: https://www.elpais.com.uy/vida-actual/policia-chicago-big-data-evitar-crimenes-ocurran.html
[7] Prnewswire. (2019). Big Data and Artificial Intelligence to Enhance Homeland Security & Public Safety Technologies. Revista PR Newswire. Recuperado de: https://www.prnewswire.com/news-releases/big-data-and-artificial-intelligence-to-enhance-homeland-security--public-safety-technologies-300819323.html
[8] CONPES 3854. (2016). Documento CONPES 3854. Política Nacional de Seguridad Digital. Biblioteca digital Cámara de Comercio de Bogotá. Recuperado de: http://hdl.handle.net/11520/14856
[9] MinTIC. (2016). Lo que usted debe saber del CONPES de Seguridad Digital. Ministerio de Tecnologías de la Información y las Comunicaciones. Recuperado de: https://www.mintic.gov.co/portal/604/w3-article-15410.html
[10] Semana. (2016). Tecnología para saber dónde y cuándo ocurrirá un crimen. Revista Semana. Recuperado de: https://www.semana.com/tecnologia/articulo/aplicaciones-que-predicen-los-crimenes/498979
[11] Semana. (2018). La ciberdefensa en Colombia, el nuevo frente de la guerra. Revista Semana. Recuperado de: https://www.semana.com/contenidos-editoriales/fuerzas-armadas-marcha-hacia-la-paz/articulo/la-ciberdefensa-en-colombia/574813
[12] Balachandran, B. & Prasad, S. (2017). Challenges and Benefits of Deploying Big Data Analytics in the Cloud for Business Intelligence. Procedia Computer Science; 112; 1112-1122. https://doi.org/10.1016/j.procs.2017.08.138
[13] Stevens, M., Wehrens, R. & De Bont, A. (2018). Conceptualizations of Big Data and their epistemological claims in healthcare: A discourse analysis. Big Data & Society; 5(2), https://doi.org/10.1177/2053951718816727
[14] Zhang, Y., Huang, T. & Bompard, E. (2018). Big data analytics in smart grids: a review. Energy Informatics. https://doi.org/10.1186/s42162-018-0007-5
[15] Gupta, D. & Rani, R. (2018). A study of big data evolution and research challenges. Journal of Information Science; 45(3); 322-340. https://doi.org/10.1177/0165551518789880
[16] Almeida, F. (2017). Benefits, Challenges and Tools of Big Data Management. Journal Of Systems Integration; 8(4). http://dx.doi.org/10.20470/jsi.v8i4.311
[17] Nascio. (2019). State cio Top 10 Priorities. Strategies, Management & Process Solutions. Recuperado de: https://www.nascio.org/Portals/0/Publications/Documents/2019/NASCIO_Top10_lettersize.pdf
[18] Emcien. (2018). Big Data for Public Safety: 4 use cases for intelligence and law enforcement agencies to leverage Big Data for crime prevention. Recuperado de: http://emcien.com/res_guides/Big-Data-for-Public-Safety.pdf
[19] Shihua, L. (2017). Shenzhen Uses ‘Video + Big Data’ for Safer City. Huawei. Recuperado de: https://e.huawei.com/en/publications/global/ict_insights/201711060837/public/201712280841
[20] Hodge, T. (2018). Application of Big Data Analytics to Support Homeland Security Investigations Targeting Human Smuggling Networks. Thesis. Naval Postgraduate School, Monterey, California. Recuperado de: https://www.hsdl.org/?view&did=811315
[21] Van Puyvelde, D., Coulthart, S. & Hossain, M. (2017). Beyond the buzzword: big data and national security decision-making. International Affairs; 93(6); 1397–1416. https://doi.org/10.1093/ia/iix184
[22] Favaretto, M., De Clercq, E. & Elger, B. (2019). Big Data and discrimination: perils, promises and solutions. A systematic review. Journal of Big Data; 6. https://doi.org/10.1186/s40537-019-0177-4
[23] Parlamento Europeo. (2017). Implicaciones de los macrodatos en los derechos fundamentales. Resolución del Parlamento Europeo, de 14 de marzo de 2017, sobre las implicaciones de los macrodatos en los derechos fundamentales: privacidad, protección de datos, no discriminación, seguridad y aplicación de la ley (2016/2225(INI)). Recuperado de: http://www.europarl.europa.eu/doceo/document/TA-8-2017-0076_ES.pdf
[24] Castañeda, J., Mora, L., Botero, C., Toledo, A. & Labarthe, S. (2016). Big Data: Un aporte para la discusión de la política pública en Colombia. Recuperado de: https://karisma.org.co/descargar/big-data-un-aporte-para-ladiscusion-de-la-politica-publica-en-colombia/
[25] Majaj, N. & Pelli, D. (2018). Deep learning-Using machine learning to study biological vision. Journal of Vision; 18(2). https://doi.org/10.1167/18.13.2
[26] Osisanwo F.Y., Akinsola J.E.T., Awodele O., Hinmikaiye J. O., Olakanmi O., & Akinjobi J. (2017). Supervised Machine Learning Algorithms: Classification and Comparison. International Journal of Computer Trends and Technology (IJCTT); 48(3). https://www.ijcttjournal.org/2017/Volume48/number-3/IJCTT-V48P126.pdf
[27] Shalev-Shwartz, S. & Ben-David, S. (2014). Understanding Machine Learning: From Theory to Algorithms (libro). Cambridge University Press. United States of America. ISBN 978-1-107-05713-5. Recuperado de: https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
[28] Sarker, I., Kayes, A. & Watters, P. (2019). Effectiveness analysis of machine learning classification models for predicting personalized context-aware smartphone usage. Journal of Big Data, https://doi.org/10.1186/s40537-019-0219-y
[29] Das, S., Dey, A., Pal, A. & Roy, N. (2015). Applications of Artificial Intelligence in Machine Learning: Review and Prospect. International Journal of Computer Applications; 115(9). https://pdfs.semanticscholar.org/6850/8ffc9f75462fd31de620d03093b214734011.pdf
[30] Pellerin, C. (2017). Project Maven Industry Day Pursues Artificial Intelligence for DoD Challenges. U.S. Dept of Defense. Recuperado de: https://www.defense.gov/Newsroom/News/Article/Article/1356172/project-maven-industry-day-pursues-artificial-intelligence-for-dod-challenges/
[31] CRS. (2019). Artificial Intelligence and National Security. Congressional Research Service. R45178, Version 4. Recuperado de: https://fas.org/sgp/crs/natsec/R45178.pdf
[32] Goldstein, P. (2019). How Pattern Recognition and Machine Learning Helps Public Safety Departments. StateTech Magazine. Recuperado de: https://statetechmagazine.com/article/2019/05/how-pattern-recognition-and-machine-learning-helps-public-safety-departments-perfcon
[33] Sisak, M. (2019). NYPD says its new software is helping analysts track crime patterns more quickly. Los Ángeles Times. Recuperado de: https://www.latimes.com/nation/la-na-new-york-computer-policing-20190310-story.html
[34] Hatleback, E. (2018). The protoscience of cybersecurity. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology; 15(1); 5-12. https://doi.org/10.1177/1548512917737635
[35] Cisco. (2019). Defensa contra las amenazas más graves de la actualidad. Informe sobre amenazas. Febrero de 2019. Cisco. Recuperado de: https://www.cisco.com/c/dam/global/es_es/assets/pdfs/es_cybersecurityseries_thrt_01_0219_r2-2.pdf
[36] Subroto, A. & Apriyana, A. (2019). Cyber risk prediction through social media big data analytics and statistical machine learning. Journal of Big Data; 6. https://doi.org/10.1186/s40537-019-0216-1
[37] Presidencia de Colombia. (2017). Prevención cibernetica. Recuperado de: http://especiales.presidencia.gov.co/Documents/20170601-ataques-ciberneticos/sin-ciber-ataques.html
[38] AGCS. (2019). Allianz Risk Barometer 2019: Cyber joins business interruption as a leading global risk for companies for first time. Allianz Global Corporate & Specialty. Recuperado de: https://www.agcs.allianz.com/news-and-insights/news/allianz-risk-barometer-2019.html
[39] Caivirtual. (2017a). Costos del Cibercrimen en Colombia 2016-2017. Centro cibernético policial. Recuperado de: https://caivirtual.policia.gov.co/sites/default/files/costos_del_cibercrimen_v4.pdf
[40] Portafolio. (2019a). El secuestro de información desangra a las empresas del país. Revista Portafolio. Recuperado de: https://www.portafolio.co/negocios/empresas/ciberataques-a-las-empresas-en-colombia-525729
[41] Deloitte. (2019). Ciber Riesgos y Seguridad de la Información en América Latina & Caribe Tendencias 2019. Reporte Colombia. Deloitte. https://www2.deloitte.com/content/dam/Deloitte/co/Documents/risk/Cyber%20Survey%20LATAM%20-%20Colombia%20v2.pdf
[42] El Tiempo. (2019). Cibercriminales ponen la mira en sectores de consumo masivo. Periódico El Tiempo. Recuperado de: https://www.eltiempo.com/tecnosfera/novedades-tecnologia/sectores-de-consumo-masivo-en-la-mira-de-cibercriminales-386806
[43] Semana (2019). Así está Colombia en el ranking de ciberseguridad mundial. Revista Semana. Recuperado de: https://www.semana.com/nacion/articulo/asi-esta-colombia-en-el-ranking-de-ciberseguridad-mundial/601118
[44] Khraisat, A., Gondal, I., Vamplew, P. & Kamruzzaman, J. (2019). Survey of intrusion detection systems: techniques, datasets and challenges. Cybersecurity; 2(20). https://doi.org/10.1186/s42400-019-0038-7
[45] Hu, Y., Yang, A., Li, H., Sun, Y. & Sun, L. (2018). A survey of intrusion detection on industrial control systems. International Journal of Distributed Sensor Networks; 14(8). https://doi.org/10.1177/1550147718794615
[46] El Espectador. (2018). Seguridad informática, una guerra de robots. (2018). Periódico El Espectador. Recuperado de: https://www.elespectador.com/tecnologia/seguridad-informatica-una-guerra-de-robots-articulo-742986
[47] Rodríguez, P. & Cordero, A. (2018). Ciberseguridad: los acuerdos de cooperación para el tratamiento de las amenazas en el ciberespacio. El caso de Estados Unidos y China. Tesis. Universidad de la Salle, Facultad de Ciencias Económicas y Sociales, Bogotá, Colombia. Recuperado de: http://repository.lasalle.edu.co/bitstream/handle/10185/25117/64122001_2018.pdf?sequence=1&isAllowed=y
[48] Caivirtual. (2017b). Amenazas del Cibercrimen en Colombia 2016-2017. Centro cibernético policial. Recuperado de: https://caivirtual.policia.gov.co/sites/default/files/informe_amenazas_de_cibercrimen_en_colombia_2016_-_2017_1.pdf
[49] Portafolio. (2019b). Colombia y Chile, con memorando de ciberseguridad. Revista Portafolio. Recuperado de: https://www.portafolio.co/negocios/colombia-y-chile-con-memorando-de-ciberseguridad-527823
[50] Presidencia de Colombia. (2018). Convenio sobre la Ciberdelincuencia-Ley 1928 del 24/jul/2018. Colombia aprueba la adhesión a convenio Budapest o convención de Europa sobre cibercriminalidad. http://es.presidencia.gov.co/normativa/normativa/LEY%201928%20DEL%2024%20DE%20JULIO%20DE%202018.pdf
[51] Caivirtual. (2017c). Balance cibercrimen en Colombia 2017. (2017). Centro cibernético policial. Recuperado de: https://caivirtual.policia.gov.co/sites/default/files/informe_cibercrimen_201217_1_1_0.pdf
[52] Catota, F., Morgan, M. & Sicker, D. (2019). Cybersecurity education in a developing nation: the Ecuadorian environment. Journal of Cybersecurity; 5(1). https://doi.org/10.1093/cybsec/tyz001
[53] Presidencia de Colombia. (2019). Gobierno y Cisco firmaron acuerdo para la innovación y transformación digital de Colombia. Recuperado de: https://id.presidencia.gov.co/Paginas/prensa/2019/190508-Gobierno-y-Cisco-firmaron-acuerdo-para-la-innovacion-y-transformacion-digital-de-Colombia.aspx
[54] Rosser, G. & Cheng, T. (2019). Improving the Robustness and Accuracy of Crime Prediction with the Self-Exciting Point Process Through Isotropic Triggering. Applied Spatial Analysis and Policy; 12(1); 5–25. https://doi.org/10.1007/s12061-016-9198-y
[55] Coppola, F. (2018). Mapping the Brain to Predict Antisocial Behaviour: New Frontiers in Neurocriminology, ‘New’ Challenges for Criminal Justice. UCL Journal of Law and Jurisprudence – Special. Issue 1, Article 5. DOI:10.14324/111.2052-1871.099
[56] Mohler, G. & Porter, M. (2018). Rotational grid, PAI-maximizing crime forecasts. Statistical Analysis and Data Mining: The ASA Data Science Journal; 11(5); 227-236. https://docs.wixstatic.com/ugd/9226cc_0a3ab606687b47788f7fdb3926d0bfaf.pdf
[57] Saltos, G. & Cocea, M. (2017). An Exploration of Crime Prediction Using Data Mining on Open Data. International Journal of Information Technology & Decision Making; 16(5); 1155-1181. https://www.researchgate.net/publication/317134535_An_Exploration_of_Crime_Prediction_Using_Data_Mining_on_Open_Data
[58] Smith, M. (2018). Can we predict when and where a crime will take place? BBC News. Recuperado de: https://www.bbc.com/news/business-46017239
[59] IBM. (s.f.). Crime Prediction and Prevention. IBM Public Safety and Policing. Recuperado de: https://www.ibm.com/industries/government/public-safety/crime-prediction-prevention
[60] BBC. (2018). El ladrón que fue atrapado en Italia gracias a un nuevo algoritmo para predecir delitos inventado en Nápoles. BBC News. Recuperado de: https://www.bbc.com. Recuperado de: https://www.bbc.com/mundo/noticias-46261759
[61] Gurney, K. (2015). Using Data to Predict and Prevent Crime in LatAm. Revista Insight Crime. Recuperado de: https://www.insightcrime.org/news/analysis/using-data-to-predict-and-prevent-crime-in-latam/
[62] Unesco. (2018). Cómo los datos y las TIC pueden ser eficaces aliados para prevenir la violencia juvenil en los países del norte de Centroamérica. Recuperado de: http://www.unesco.org/new/fileadmin/MULTIMEDIA/FIELD/Montevideo/pdf/PolicyPapers-NorteCentroAmerica-TICViolenciaJovenes-web-.pdf
[63] Bogotá. (2019). Bogotá desarrollará un método de predicción de delitos. Alcaldía de Bogotá. Recuperado de: https://bogota.gov.co/mi-ciudad/seguridad/nuevo-metodo-de-prediccion-de-delitos-sera-desarrollado-en-bogota
[64] SCJ. (2019). Bogotá, pionera en el país en desarrollar un método de predicción de delitos. Secretaría Distrital de Seguridad, Convivencia y Justicia. Recuperado de: https://scj.gov.co/es/noticias/bogot%C3%A1-pionera-pa%C3%ADs-desarrollar-m%C3%A9todo-predicci%C3%B3n-delitos
[65] Armour, C. & Ross, J. (2017). The Health and Well-Being of Military Drone Operators and Intelligence Analysts: A Systematic Review. Military Psychology; 29(2); 83–98. https://doi.org/10.1037/mil0000149
[66] Revista Policía Nacional. (2018). Nº. 317 Cuarta Edición Octubre-Diciembre 2018. ISSN 0122-0411. Recuperado de: https://www.policia.gov.co/sites/default/files/publicaciones-institucionales/revista-policia-nacional-edicion-317.pdf
[67] Rodríguez, J. (2019). Entran en operación los drones para vigilancia en Bogotá. RCN Radio. Recuperado de: https://www.rcnradio.com/bogota/entran-en-operacion-los-drones-para-vigilancia-en-bogota
[68] Deschênes, P. (2019). The Rise of the Drones: Technological Development of Miniaturised Weapons and the Challenges for the Royal Canadian Navy. Canadian Military Journal; 19(2). http://www.journal.forces.gc.ca/Vol19/No2/PDF/CMJ192Ep51.pdf
[69] SIC. (2017). Boletín Tecnológico Nanosatélites. Centro de Información Tecnológica y Apoyo a la Gestión de la Propiedad Industrial (CIGEPI). Superintendencia de Industria y Comercio. Recuperado de: http://www.sic.gov.co/sites/default/files/files/Propiedad%20Industrial/Boletines_Tecnologicos/Boletin_Nanosatelites.pdf
[70] FACSAT-2 (2019). Así avanza el ensamblaje del prototipo del FACSAT-2. Fuerza Aérea Colombiana. Recuperado de: https://www.fac.mil.co/as%C3%AD-avanza-el-ensamblaje-del-prototipo-del-facsat-2
[71] Mohamad, M & Hassan, W. (2019). Current research on Internet of Things (IoT) security: A survey. Computer Networks; (148); 283-294. https://doi.org/10.1016/j.comnet.2018.11.025
[72] Chaabouni, N., Mosbah, M., Zemmari, A., et al. (2019). Network Intrusion Detection for IoT Security Based on Learning Techniques. IEEE Communications Surveys & Tutorials. Vol: 21, Issue: 3. DOI: 10.1109/COMST.2019.2896380
[73] Alban, N. (s.f). El Internet de las Cosas para un Gobierno Inteligente. Alianza CAOBA. Recuperado de: http://alianzacaoba.co/inicio/mas-noticias-big-data-y-data-analytics-en-colombia-y-el-mundo/internet-las-cosas-gobierno-inteligente/
[74] Joshi, N. (2019). Leveraging AI And IoT For Citizen Security In Smart Cities. Revista Forbes. Recuperado de: https://www.forbes.com/sites/cognitiveworld/2019/07/09/leveraging-ai-and-iot-for-citizen-security-in-smart-cities/#455f82eae151
[75] Mohammed, H & Qayyum, M. (2017). Internet of Things: A Study on Security and Privacy Threats. DOI: 10.1109/Anti-Cybercrime.2017.7905270
[76] Patel, H. (2017). IoT Needs Better Security. ISACA Journal, Vol 3. https://www.isaca.org/Journal/archives/2017/Volume-3/Pages/iot-needs-better-security.aspx
[77] Boeckl, K., Fagan, M., Fisher, W. et al. (2019). Considerations for Managing Internet of Things (IoT) Cybersecurity and Privacy Risks. National Institute of Standards and Technology. NISTIR 8228. https://doi.org/10.6028/NIST.IR.8228
[78] Garamone, J. (2018). DoD Studying Implications of Wearable Devices Giving Too Much Info. U.S. Department of Defense. Recuperado de: https://dod.defense.gov/News/Article/Article/1426579/dod-studying-implications-of-wearable-devices-giving-too-much-info
[79] NISTIR 8200. (2018). Interagency Report on the Status of International Cybersecurity Standardization for the Internet of Things. (IoT). National Institute of Standards and Technology. https://doi.org/10.6028/NIST.IR.8200
[80] Telefónica. (2019). Telefónica velará por la seguridad de Internet de las Cosas con una nueva unidad de ciberseguridad IoT. Recuperado de: https://www.telefonica.com/es/web/sala-de-prensa/-/telefonica-velara-por-la-seguridad-de-internet-de-las-cosas-con-una-nueva-unidad-de-ciberseguridad-iot