Tomography for electrical impedance an alternative method for monitoring joint injuries

Main Article Content

Juan David Muñoz Sánchez
Víctor Hugo Mosquera Leyton

Abstract

Introduction:This review article shows the state of the art of different techniques for monitoring joint injuries. This work is the product of the research project "Viability of electrical impedance tomography for the monitoring of joint injuries", which took place at the University of Cauca during the period 2018-2019.


Aim:Identify non-invasive bio-image methods that are used in the evaluation of joint diseases.


Methodology: Selection and review of papers related to the evaluation of joint injuries using non-invasive bio-image technologies using systematic mapping.


 Results: Magnetic resonance and computed tomography systems make up the non-invasive methods of greater reliability and application in the evaluation of joint injuries. Similarly, some studies show good results from other methods such as systems based on bio-impedance when monitoring the deterioration of joint cartilage. However, electrical impedance tomography (EIT) devices have not yet been widely studied in the joint injuries evaluation.


Conclusion: Electronic prototypes of low-cost electrical impedance tomography have been developed that have allowed for the detection and recognition of gestures made by hand from the analysis of the distribution of conductivity in the wrist joint, which allows us to infer that EIT could be a good alternative for the monitoring of joint injuries.


Originality: The literature does not show studies focused on the development and implementation of EIT systems in medical applications related to joint injuries.


Limitations: This review paper only mentions those studies that describe the non-invasive bio-image methods used to evaluate joint diseases, including the medical applications of EIT systems.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Muñoz Sánchez J. D. and Mosquera LeytonV. H., “Tomography for electrical impedance: an alternative method for monitoring joint injuries ”, ing. Solidar, vol. 16, no. 1, Jan. 2020.
Section
Research Articles

References

[1] M. Maini, F. Adelowo, J. Saleh, Y. Weshahi, G. R. Burmester, M. Cutolo, J. Flood, L. March, H. M. D. Blumer, K. Pile, C. Pineda, C. Thorne, and T. K. Kvien, “The global challenges and opportunities in the practice of rheumatology: White paper by the world forum on rheumatic and musculoskeletal diseases,” Clinical Rheumatology, vol. 34, no. 5, pp. 819-829, May 2015. [Online]. doi: https://doi.org/10.1007/s10067-014-2841-6.

[2] W. Marder. É. Vinet, and E. C. Somers, “Rheumatic autoimmune diseases in women and midlife health,” Women’s Midlife Health, vol. 1, no. 11, pp. 1-8, Dec 2015. [Online]. doi: https://doi.org/10.1186/s40695-015-0012-9.

[3] G. Musumeci, “The effect of mechanical loading on articular cartilage,” Journal of Functional Morphology and Kinesiology, vol. 1, no. 2, pp. 154-161, 2016. [Online]. doi: https://doi.org/10.3390/jfmk1020154.

[4] E. M. Gravallese, S. R. Goldring, and G. Schett, “Chapter 13 - the role of the immune system in the local and systemic bone loss of inammatory arthritis,” Osteoimmunology: Interactions of the Immune and Skeletal Systems, pp. 241-256, 2016. [Online]. doi: https://doi.org/10.1016/B978-0-12-800571-2.00013-X.

[5] R. Cimaz, “Systemic-onset juvenile idiopathic arthritis,” Autoimmunity Reviews, pp. 1-4, 2016. [Online]. doi: https://doi.org/10.1016/j.autrev.2016.07.004.

[6] G. S. Firestein and I. B. McInnes, “Immunopathogenesis of rheumatoid arthritis,” Immunity, vol. 46, no. 2, pp. 183-196, 2017. [Online]. doi: https://doi.org/10.1016/j.immuni.2017.02.006.

[7] A. O. Hersh and S. Prahalad, “Immunogenetics of juvenile idiopathic arthritis: A comprehensive review,” Journal of Autoimmunity, vol. 64, pp. 113-124, 2015. [Online]. doi: https://doi.org/10.1016/j.jaut.2015.08.002.

[8] I. Afara, I. Prasadam, Z. Arabshahi, Y. Xiao, and A. Oloyede, “Monitoring osteoarthritis progression using near infrared (nir) spectroscopy,” Scientific Reports, vol. 7, no. 11463, pp. 1-9, 2017. [Online]. doi: https://doi.org/10.1038/s41598-017-11844-3.

[9] Q. Li, K. Amano, T. Link, and C. Ma, “Advanced imaging in osteoarthritis,” Sports Health, vol. 8, no. 5, pp. 418-428, 2016. [Online]. doi: https://doi.org/10.1177/1941738116663922.

[10] J. A. Singh, “Gout: will the “king of diseases” be the first rheumatic disease to be cured?,” BMC Medicine, vol. 14, no. 180, pp. 1-5, 2016. [Online]. doi: https://doi.org/10.1186/s12916-016-0732-1.

[11] F. P. Ruiz, N. Dalbeth, and T. Bardin, “A review of uric acid, crystal deposition disease, and gout,” Advances in Therapy, vol. 32, no. 1, pp. 31-41, 2015. [Online]. doi: https://doi.org/10.1007/s12325-014-0175-z.

[12] S. S. Gajre, S. Anand, U. Singh, and R. K. Saxena, “Novel method of using Dynamic electrical impedance signals for noninvasive diagnosis of knee osteoarthritis,” International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp. 2207-2210, 2006. [Online]. doi: https://doi.org/10.1109/IEMBS.2006.260671.

[13] S. S. Gajre, U. Singh, R. K. Saxena, and S. Anand, “Electrical impedance signal analysis in assessing the possibility of non-invasive diagnosis of knee osteoarthritis,” Journal of medical engineering & technology, vol. 31, no. 4, pp. 288-299, 2007. [Online]. doi: https://doi.org/10.1080/03091900600863745.

[14] Y. Morita, S. Suzuki, H. Kondo, and N. Tomita, “A feasibility study for evaluation of mechanical properties of articular cartilage with a two-electrode electrical impedance method,” Journal of Orthopaedic Science, vol. 17, no. 3, pp. 272-280, 2012. [Online]. doi: https://doi.org/10.1007/s00776-012-0208-x.

[15] A.M. Préville, P. Lavigne, M. Buschmann, J. Hardin, Q. Han, L. Djerroud, and P. Savard, “Electroarthrography: a novel method to assess articular cartilage and diagnose osteoarthritis by non-invasive measurement of load-induced electrical potentials at the surface of the knee,” Osteoarthritis and cartilage, vol. 21, no. 11, pp. 1731-1737, 2013. [Online]. doi: https://doi.org/10.1016/j.joca.2013.07.003.

[16] Q. Han, M.D. Buschmann and P. Savard “The forward problem of electroarthrography: Modeling load-induced electrical potentials at the surface of the knee,” IEEE Transactions On Biomedical Engineering, vol. 61, no. 7, pp. 2020-2027, 2014. [Online]. doi: https://doi.org/10.1109/TBME.2014.2312104.

[17] R. M. Gerards, K. T. M. Opdam, C. J. A. van Bergen, C. N. van Dijk, “Diagnostic imaging modalities for osteochondral defects of the talus,” Fuß & Sprunggelenk, vol. 13, no. 2, pp. 78 – 84, 2015. [Online]. doi: https://doi.org/10.1016/j.fuspru.2015.04.003.

[18] L. Hu, Z. Huang, X. Zhang, Q. Chan, Y. Xu, G. Wang and W. Wang, “The performance of MRI in detecting subarticular bone erosion of sacroiliac joint in patients with spondyloarthropathy: A comparison with X-ray and CT,” European Journal of Radiology, vol. 83, no. 11, pp. 2058 – 2064, 2014. [Online]. doi: https://doi.org/10.1016/j.ejrad.2014.08.009.

[19] P.B. Grover, M. Tognarelli, M.E. Crossey, I. J. Cox, D. T. Robinson and J.W. McPhail. “Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians,” Journal of Clinical and Experimental Hepatology, Vol. 5, No. 3, pp. 246 - 255, 2015. [Online]. doi: https://doi.org/10.1016/j.jceh.2015.08.001.

[20] H. Matsubara, K. Okazaki, Y. Takayama, K. Osaki, Y. Matsuo, H. Honda, Y. Iwamoto, “Detection of early cartilage deterioration associated with meniscal tear using t1p mapping magnetic resonance imaging,” BMC Musculoskeletal Disorders, vol. 16, no. 22, 2015. [Online]. doi: https://doi.org/10.1186/s12891-015-0487-4.

[21] J. Le, Q. Peng, and K. Sperling, “Biochemical magnetic resonance imaging of knee articular cartilage: T1rho and t2 mapping as cartilage degeneration biomarkers,” Annals of the New York Academy of Sciences, vol. 1383, no. 1, pp. 34-42, 2016. [Online]. doi: https://doi.org/10.1111/nyas.13189.

[22] C.N. Petchprapa, L.D. Rybak, K.S. Dunham, R. Lattanzi and M.P. Recht, “Labral and cartilage abnormalities in young patients with hip pain: accuracy of 3-Tesla indirect MR arthrography,” Skeletal Radiology, vol. 44, no. 1, pp. 97-105, 2015. [Online]. doi: https://doi.org/10.1007/s00256-014-2013-4.

[23] S.C. Peers, T. Maerz, E.A. Baker, A. Shetty, Y. Xia, S. Puwal, D. Marcantonio and D. Guettler, “T1p magnetic resonance imaging for detection of early cartilage changes in knees of asymptomatic collegiate female impact and nonimpact athletes,” Clinical Journal of Sport Medicine, vol. 24, no. 3, pp. 218-225, 2014. [Online]. doi: https://doi.org/10.1097/JSM.0000000000000013.

[24] R. Lattanzi, C. Petchprapa, D. Ascani, J.S. Babb, D. Chu, R.I. Davidovitch, T. Youm, R.J. Meislin and M.P. Recht, “Detection of cartilage damage in femoroacetabular impingement with standardized dGEMRIC at 3T,” Osteoarthritis and Cartilage, vol. 22, no. 3, pp. 447-456, 2014. [Online]. doi: https://doi.org/10.1016/j.joca.2013.12.022.

[25] C. Gatlin, L. Matheny, C. Ho, N. Johnson, and T. Clanton, “Diagnostic accuracy of 3.0 tesla magnetic resonance imaging for the detection of articular cartilage lesions of the talus," Foot and Ankle International, vol. 36, no. 3, pp. 288-292, 2014. [Online]. doi: https://doi.org/10.1177/1071100714553469.

[26] C. VanBeek, B. Loeffler, A. Narzikul, V. Gordon, M. Rasiej, J. Kazam, and J. Abboud, “Diagnostic accuracy of noncontrast mri for detection of glenohumeral cartilage lesions: A prospective comparison to arthroscopy," Journal of Shoulder and Elbow Surgery, vol. 23, no. 7, pp. 1010-1016, 2014. [Online]. doi: https://doi.org/10.1016/j.jse.2014.01.048.

[27] H. Owman, C.J. Tiderius, Y.B. Ericsson and L.E. Dahlberg, “Long-term effect of removal of knee joint loading on cartilage quality evaluated by delayed gadolinium-enhanced magnetic resonance imaging of cartilage,” Osteoarthritis and Cartilage, vol. 22, no. 7, pp. 928-932, 2014. [Online]. doi: https://doi.org/10.1016/j.joca.2014.04.021.

[28] K. Y. Chun, Y. S. Choi, S. H. Lee, J. S. Kim, K. W. Young, M. S. Jeong and D. J. Kim, “Deltoid ligament and tibiofibular syndesmosis injury in chronic lateral ankle instability: Magnetic resonance imaging evaluation at 3t and comparison with arthroscopy,” Korean Journal of Radiology, vol. 16, no. 5, pp. 1096-1103, 2015. [Online]. doi: https://doi.org/10.3348/kjr.2015.16.5.1096.

[29] S. Puig, Y. Kuruvilla, L. Ebner, and G. Endel, “Magnetic resonance tomography of the knee joint," Skeletal Radiology, vol. 44, no. 10, pp. 1427-1434, 2015. [Online]. doi: https://doi.org/10.1007/s00256-015-2178-5.

[30] L. Felli, G. Garlaschi, A. Muda, A. Tagliafico, M. Formica, A. Zanirato and M. Mazzola, “Comparison of clinical, MRI and arthroscopic assessments of chronic ACL injuries, meniscal tears and cartilage defects,” Musculoskeletal Surgery, vol. 100, no. 3, pp. 231-238, 2016. [Online]. doi: https://doi.org/10.1007/s12306-016-0427-y.

[31] S. J. Warner, M. R. Garner, P. C. Schottel, R. M. Hinds, M. L. Loftus and D. G. Lorich, “Analysis of PITFL injuries in rotationally unstable ankle fractures,” Foot and Ankle International, vol. 36, no. 4, pp. 377-382, 2015. [Online]. doi: https://doi.org/10.1177/1071100714558845.

[32] J. X. Cao, Y. M. Wang, X. Q. Kong, C. Yang, and P. Wang, “Good interrater reliability of a new grading system in detecting traumatic bone marrow lesions in the knee by dual energy ct virtual non-calcium images,” European Journal of Radiology, vol. 84, no. 6, pp. 1109-1115, 2015. [Online]. doi: https://doi.org/10.1016/j.ejrad.2015.03.003.

[33] K. Myller, M. Turunen, J. Honkanen, S. Vaananen, J. Iivarinen, J. Salo, J. Jurvelin, and J. Toyras, “In vivo contrast-enhanced cone beam ct provides quantitative information on articular cartilage and subchondral bone,” Annals of Biomedical Engineering, vol. 45, no. 3, pp. 811-818, 2017. [Online]. doi: https://doi.org/10.1007/s10439-016-1730-3.

[34] K. N. Glazebrook, L. J. Brewerton, S. Leng, R. E. Carter, P. C. Rhee, N. S. Murthy, B. M. Howe, M. D. Ringler, D. L. Dahm, M. J. Stuart, C. H. McCollough and J. G. Fletcher, “Case-control study to estimate the performance of dual-energy computed tomography for anterior cruciate ligament tears in patients with history of knee trauma,” Skeletal Radiology, vol. 43, no. 3, pp. 297-305, 2014. [Online]. doi:, https://doi.org/10.1007/s00256-013-1784-3.

[35] M. Wijffels, W. Stomp, P. Krijnen, M. Reijnierse and I. Schipper, “Computed tomography for the detection of distal radioulnar joint instability: normal variation and reliability of four CT scoring systems in 46 patients,” Skeletal Radiology, vol. 45, no. 11, pp. 1487-1493, 2016. [Online]. doi: https://doi.org/10.1007/s00256-016-2455-y.

[36] S. Mirsadraee and E. J. R. van Beek. “Functional Imaging: Computed Tomography and MRI,” Clinics in Chest Medicine, Vol. 36, No. 2, pp. 349 - 363, 2015. [Online]. doi: https://doi.org/10.1016/j.ccm.2015.02.014.

[37] A. Saukko, J. Honkanen, W. Xu, S. Vaananen, J. Jurvelin, V. P. Lehto,and J. Toyras, “Dual contrast ct method enables diagnostics of cartilageinjuries and degeneration using a single ct image," Annals of Biomedical Engineering, vol. 45, no. 12, pp. 2857-2866, 2017. [Online]. doi: https://doi.org/10.1007/s10439-017-1916-3.

[38] S. Yadav, L. Palo, M. Mahdian, M. Upadhyay, and A. Tadinada, “Diagnostic accuracy of 2 cone-beam computed tomography protocols for detecting arthritic changes in temporomandibular joints," American
Journal of Orthodontics and Dentofacial Orthopedics, vol. 147, no. 3, pp. 339 - 344, 2015. [Online]. doi: https://doi.org/10.1016/j.ajodo.2014.11.017.

[39] H. Moritomo, S. Arimitsu, N. Kubo, T. Masatomi and M. Yukioka, “Computed tomography arthrography using a radial plane view for the detection of triangular fibrocartilage complex foveal tears,” Journal of Hand Surgery, vol. 40, no. 2, pp. 245-251, 2015. [Online]. doi: https://doi.org/10.1016/j.jhsa.2014.10.051.

[40] B. Nelson, C. Kawcak, L. Goodrich, N. Werpy, A. ValdAc s-MartAnez, and C. McIlwraith, “Comparison between computed tomographic arthrography, radiography, ultrasonography and arthroscopy for the diagnosis of femorotibial joint disease in western performance horses,” Veterinary radiology & ultrasound, vol. 57, no. 4, pp. 387-402, 2016. [Online]. doi: https://doi.org/10.1111/vru.12366.

[41] S. Demehri, M. Chalian, S.J. Farahani, E.K. Fishman and L.M. Fayad, “Detection and characterization of tendon abnormalities with multidetector computed tomography,” Journal of Computer Assisted Tomography, vol. 38, no. 2, pp. 299-307, 2014. [Online]. doi: https://doi.org/10.1097/RCT.0b013e3182aa72bf.

[42] H. J. Nieminen, T. Ylitalo, S. Karhula, J. P. Suuronen, S. Kauppinen, R. Serimaa, E. Hæggström, K. P. H. Pritzker, M. Valkealahti, P. Lehenkari, M. Finnilä, S. Saarakkala, “Determining collagen distribution in articular cartilage using contrast-enhanced micro-computed tomography,” Osteoarthritis and Cartilage, vol. 23, no. 9, pp. 1613 – 1621, 2015. [Online]. doi: https://doi.org/10.1016/j.joca.2015.05.004.

[43] S. E. Repse, B. Amis and J. M. Troupis, “Four-dimensional computed tomography and detection of dynamic capitate subluxation,” Journal of Medical Imaging and Radiation Oncology, vol. 59, no. 3, pp. 331-335, 2015. [Online]. doi: https://doi.org/10.1111/1754-9485.12260.

[44] A. E. J. Powles, D. J. Martin, I. T. P. Wells and C. R. Goodwin. “Physics of ultrasound,” Anaesthesia & Intensive Care Medicine, vol. 19, no. 4, pp. 202 - 205, Apr. 2018. [Online]. doi: https://doi.org/10.1016/j.mpaic.2018.01.005.

[45] B. Dezfuli, M. S. Taljanovic, D. M. Melville, E. A. Krupinski and J. E. Sheppard, “Accuracy of High-Resolution Ultrasonography in the Detection of Extensor Tendon Lacerations,” Annals of Plastic Surgery, vol. 76, no. 2, pp. 187-192, 2016. [Online]. doi: https://doi.org/10.1097/SAP.0000000000000524.
[46] F. Machado, J. Natour, R. Takahashi, and R. Furtado, “Articular ultrasound in asymptomatic volunteers:
Identi_cation of the worst measures of synovial hypertrophy, synovial blood flow and joint damage among small-, medium-A and large-sized joints,” Ultrasound in Medicine and Biology, vol. 43, no. 6, pp. 1141-1152, 2017. [Online]. doi: https://doi.org/10.1016/j.ultrasmedbio.2017.01.021.

[47] H. Nieminen, T. Ylitalo, J. P. Suuronen, K. Rahunen, A. Salmi, S. Saarakkala, R. Serimaa, and E. Haeggstrom, “Delivering agents locally into articular cartilage by intense mhz ultrasound,” Ultrasound in Medicine and Biology, vol. 41, no. 8, pp. 2259-2265, 2015. [Online]. doi: https://doi.org/10.1016/j.ultrasmedbio.2015.03.025.

[48] S. Y. Kawashiri, T. Suzuki, Y. Nakashima, Y. Horai, A. Okada, A. Nishino, N. Iwamoto, K. Ichinose, K. Arima, M. Tamai, H. Nakamura, T. Origuchi, M. Uetani, K. Aoyagi, K. Eguchi, and A. Kawakami, “Synovial inflammation assessed by ultrasonography correlates with mri-proven osteitis in patients with rheumatoid arthritis,” Rheumatology, vol. 53, no. 8, pp. 1452-1456, 2014. [Online]. doi: https://doi.org/10.1093/rheumatology/keu034.

[49] Y. Wu, D. Jiang, J. Duan, X. Liu, R. Bayford, and A. Demosthenous, “Towards a high accuracy wearable hand gesture recognition system using eit,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1-4 2018. [Online]. doi: https://doi.org/10.1109/ISCAS.2018.8351296.

[50] S. A. Santos, C. C. Wembers, K. Horst, R. Pfeifer, T. P. Simon, H. C. Pape, F. Hildebrand, M. Czaplik, S. Leonhardt, and D. Teichmann, “Monitoring lung contusion in a porcine polytrauma model using EIT: an application study,” Physiological Measurement, vol. 38, no. 8, pp. 1542-1560, 2017. [Online]. doi: https://doi.org/10.1088/1361-6579/aa7985.

[51] Y. Zhang, R. Xiao, “Advancing hand gesture recognition with high resolution electrical impedance tomography,” UIST, pp. 843-850, 2016. [Online]. doi: https://doi.org/10.1145/2984511.2984574.

[52] D. J. Matthies, S. T. Perrault, B. Urban, and S. Zhao, “Botential: Localizing on-body gestures by measuring electrical signatures on the human skin,” International Conference on Human-Computer Interaction with Mobile Devices and Services, pp. 207-216, 2015. [Online]. doi: https://doi.org/10.1145/2785830.2785859.

[53] Y. Zhang and C. Harrison, “Tomo: Wearable, low-cost, electrical impedance tomography for hand gesture recognition,” UIST, pp. 167-173, 2015. [Online]. doi: https://doi.org/10.1145/2807442.2807480.

[54] J. Podlipská, A. Guermazi, P. Lehenkari, J. Niinimaki, F. W. Roemer, J. P. Arokoski, P. Kaukinen, E. Liukkonen, E. Lammentausta, and M. T. Nieminen, “Comparison of diagnostic performance of semi-quantitative knee ultrasound and knee radiography with MRI: Oulu knee osteoarthritis study,” Scientific reports, vol. 6, no. 22365, 2016. [Online]. doi: https://doi.org/10.1038/srep22365.

[55] F. Simeone, C. Gill, A. Taneja, M. Torriani, and M. Bredella, “Glenohumeral position during ct arthrography with arthroscopic correlation: optimization of diagnostic yield,” Skeletal Radiology, vol. 46, no. 6, pp. 769-776, 2017. [Online]. doi: https://doi.org/10.1007/s00256-017-2613-x.

[56] J. Avery, T. Dowrick, M. Faulkner, N. Goren, and D. Holder, “A versatile and reproducible multi-frequency electrical impedance tomography system," Sensors, vol. 17, no. 280, pp. 1-20, 2017. [Online]. doi: https://doi.org/10.3390/s17020280.

[57] S. Hong, J. Lee, J. Bae, and H. J. Yoo, “A 10.4 mw electrical impedance tomography soc for portable real-time lung ventilation monitoring system," IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp. 2501-2512, 2015. [Online]. doi: https://doi.org/10.1109/JSSC.2015.2464705.

[58] B. Cambiaghi, O. Moerer, N. K. Szikszay, T. Mauri, A. Just, J. Dittmar, and G. Hahn, “A spiky pattern in the course of electrical thoracic impedance as a very early sign of a developing pneumothorax,” Clinical Physiology and Functional Imaging, vol. 38, no. 1, pp. 158-162, 2018. [Online]. doi: https://doi.org/10.1111/cpf.12385.

[59] G. Boverman, T. J. Kao, X. Wang, J. Ashe, D. Davenport, and B. Amm, “Detection of small bleeds in the brain with electrical impedance tomography,” Physiological Measurement, vol. 37, no. 6, pp. 727-750, 2016. [Online]. doi: https://doi.org/10.1088/0967-3334/37/6/727.

[60] F. Fu, B. Li, M. Dai, S. J. Hu, X. Li, C. H. Xu, B. Wang, B. Yang, M. X. Tang, X. Z. Dong, Z. Fei, and X. T. Shi, “Use of electrical impedance tomography to monitor regional cerebral edema during clinical dehydration treatment,” PLoS ONE, 2014, pp. 1-15. [Online]. doi: https://doi.org/10.1371/journal.pone.0113202.

[61] T. Mauri, N. Eronia, C. Turrini, M. Battistini, G. Grasselli, R. Rona, C. Volta, G. Bellani, and A. Pesenti, “Bedside assessment of the effects of positive end-expiratory pressure on lung ination and recruitment by the helium dilution technique and electrical impedance tomography,” Intensive Care Medicine, vol. 42, no. 10, pp. 1576-1587, 2016. [Online]. doi: https://doi.org/10.1007/s00134-016-4467-4.

[62] J. Karsten, C. Grusnick, H. Paarmann, M. Heringlake, and H. Heinze, “Positive end-expiratory pressure titration at bedside using electrical impedance tomography in post-operative cardiac surgery patients,” Acta Anaesthesiologica Scandinavica, vol. 59, no. 6, pp. 723-732, 2015. [Online]. doi: https://doi.org/10.1111/aas.12518.

[63] M. Bodenstein, S. Boehme, S. Bierschock, A. Vogt, M. David, and K. Markstaller, “Determination of respiratory gas flow by electrical impedance tomography in an animal model of mechanical ventilation,” BMC Pulmonary Medicine, vol. 14, no. 73, pp.1-11, 2014. [Online]. doi: https://doi.org/10.1186/1471-2466-14-73.

[64] S. Lehmann, S. Leonhardt, C. Ngo, L. Bergmann, S. Schrading, K. Heimann, N. Wagner, and K. Tenbrock, “Electrical impedance tomography as posible guidance for individual positioning of patients with multiple lung injury,” Clinical Respiratory Journal, vol. 12, no. 1, pp. 68-75, 2018. [Online]. doi: https://doi.org/10.1111/crj.12481.

[65] E. Ericsson, E. Tesselaar, and F. Sjoberg, “Effect of electrode belt and body positions on regional pulmonary ventilation- and perfusion-related impedance changes measured by electric impedance tomography,” PLoS ONE, pp. 1-14, 2016. [Online]. doi: https://doi.org/10.1371/journal.pone.0155913.

[66] O. Radke, T. Schneider, E. Vogel, and T. Koch, “Effect of trigger sensitivity on redistribution of ventilation during pressure support ventilation detected by electrical impedance tomography,” Anesthesiology and Pain Medicine, vol. 5, no. 4, pp. 1-6, 2015. [Online]. doi: https://doi.org/10.5812/aapm.27439v2.

[67] Organización Mundial de Salud. “Dispositivos médicos”. . [Online]. Available: https://www.who.int/medical_devices/definitions/es/.

[68] C. Shi, S. Boehme, A. Bentley, E. Hartmann, K. Klein, M. Bodenstein, J. Baumgardner, M. David, R. Ullrich, and K. Markstaller, “Assessment of regional ventilation distribution: Comparison of vibration response imaging (vri) with electrical impedance tomography (eit)," PLoS ONE, vol. 9, no. 1, pp. 1-8, 2014. [Online]. doi: https://doi.org/10.1371/journal.pone.0086638.

[69] M. Bodenstein, S. Boehme, H. Wang, B. Duenges and K. Markstaller, “Hints for cyclical recruitment of atelectasis during ongoing mechanical ventilation in lavage and oleic acid lung injury detected by SpO2 oscillations and electrical impedance tomography,” Experimental Lung Research, vol. 40, no. 9, pp. 427-438, 2014. [Online]. doi: https://doi.org/10.3109/01902148.2014.944719.

[70] M. Arregui, E. Santos and F. Simini, “Test Bench to Validate Audio CODEC Kit as EIT Complex Voltage Measurement Circuit,” IFMBE Proceedings, vol. 60, pp. 134-136, 2017. [Online]. doi: https://doi.org/10.1007/978-981-10-4086-3_34.

[71] S. A. Santos, A. Robens, A. Boehm, S. Leonhardt and D. Teichmann, “System Description and First Application of an FPGA-Based Simultaneous Multi-Frequency Electrical Impedance Tomography,” Sensors, vol. 16, no. 1158, pp. 1-21, 2016. [Online]. doi: https://doi.org/10.3390/s16081158.

[72] V. Chitturi, N. Farrukh, V. Thiruchelvam, and T. K. Fei, “A Low Cost Electrical Impedance Tomography (EIT) for Pulmonary Disease Modelling and Diagnosis,” The Second International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE2014), pp. 83–89, 2014.

[73] Y. Zhang, R. Xiao and C. Harrison, “Advancing Hand Gesture Recognition with High Resolution Electrical Impedance Tomography,” UIST, pp. 843-850, 2016. [Online]. doi: https://doi.org/10.1145/2984511.2984574.

[74] M. R. Islam and M. A. Kiber, “Electrical impedance tomography imaging using Gauss-Newton algorithm,” 3rd International Conference On Informatics, ELECTRONICS & VISION, pp. 1–4, 2014. [Online]. doi: https://doi.org/10.1109/ICIEV.2014.6850719.

[75] Y. Cai, C. Ma, P. Zhang, and J. Liu, “A novel method to reconstruct central aortic pressure signal using dual-peripheral pressure waves,” 4th IEEE International Conference on Information Science and Technology, pp. 565–568, 2014. [Online]. doi: https://doi.org/10.1109/ICIST.2014.6920541.

[76] M. Hadinia and R. Jafari, “An element-free galerkin forward solver for the complete electrode model in electrical impedance tomography,” Flow Measurement and Instrumentation, vol. 45, pp. 68–74, 2015. [Online]. doi: https://doi.org/10.1016/j.flowmeasinst.2015.04.011.

[77] A. F. Mamani, “Resonancia magnética nuclear (RMN) en odontología,” Revista de Actualización Clínica Investiga, vol. 38, pp. 1892-1896, 2013. [Online]. doi: http://www.revistasbolivianas.org.bo/pdf/raci/v38/v38a09.pdf.

[78] Y. Wang, F. Seguro, E. Kao, Y. Zhang, F. Faraji, C. Zhu, H. Haraldsson, M. Hope, D. Saloner, and J. Liu, “Segmentation of lumen and outer wall of abdominal aortic aneurysms from 3D black-blood MRI with a registration based geodesic active contour model,” Medical Image Analysis, vol. 40, pp. 1 – 10, 2017. [Online]. doi: https://doi.org/10.1016/j.media.2017.05.005.

[79] K. Petersen, S. Vakkalanka and L. Kuzniarz, “Guidelines for conducting systematic mapping studies in software engineering: An update,” Information and Software Technology, vol. 64, pp. 1-18, 2015. [Online]. doi: https://doi.org/10.1016/j.infsof.2015.03.007.