Biological Nanosensors On Network for Diabetes Control With Alert Emission for Users

Main Article Content

Edison Andres Quijano Súarez
Hector Felipe Hurtado Acosta
Gerardo Alberto Castang Montiel


Introduction: This paper is the product of the research "Biological network nanosensors for diabetes control with the issuance of alerts to users", developed in the technological faculty of the Francisco José de Caldas District University carried out during 2018 and 2019.

Problem: Diabetes is a disease that affects most of the adult population and not having proper control can lead to health complications that lead to early deaths.

Objective: To propose a theoretical prototype for communication between a nano network and the applications that work to monitor networks, which issues an alarm to users who have diabetes and thus have better control of their disease.

Methodology: Research articles, books and forums published from 2010 onwards (some exceptions are found in the references) were used, along with official documentation of tools such as Netcool, Nagios and Pandora.

Results: 66 sources were found including papers, monographs, forums and others that complied with the research guidelines. In addition, numerous applications were found that can be implemented in the proposed theoretical prototype.

Conclusion: A theoretical prototype is proposed for communication between a nano network and an alarm management system for the end user. This prototype use current technologies and specialized tools.

Originality: The article presents an innovative theoretical prototype, designed to solve a problem in the health sector, that makes use of emerging technologies. 

Limitations: The internet of nano-things, oriented to biological processes, is an emerging technology. At the time of writing this paper, there are no real prototypes or tools to simulate nano networks in conjunction with biotechnology.


Download data is not yet available.

Article Details

How to Cite
E. A. Quijano Súarez, H. F. Hurtado Acosta, and G. A. Castang Montiel, “Biological Nanosensors On Network for Diabetes Control With Alert Emission for Users”, ing. Solidar, vol. 15, no. 3, pp. 1-27, Sep. 2019.
Research Articles


[1] Organización Mundial de la Salud, Diabetes: cifras y datos, pp. 1, 2018. [Online]. Available in:

[2] “Guías ALAD de diagnóstico, control y tratamiento de la Diabetes Mellitus Tipo 2,” Revista de la Asociación Latinoamericana de Diabetes, pp. 28-29, 2013. [Online]. Available in:

[3] S. Boudina and E. D. Abel, “Diabetic cardiomyopathy revisited,” Circulation, vol. 115, no. 25, pp. 3213-3223, Jun. 2007. [Online]. Available: doi:

[4] Organización Panamericana de la Salud (OPS), Editorial Panamericana, pp. 1, 2008.

[5] D. R. Whiting, L. Guariguata, C. Weil and J. Shaw, “IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030,” Diabetes Research and Clinical Practice, vol. 94, no.3, pp. 311–321. doi:

[6] “IDF Diabetes Atlas 7th Edition (2015),” International Diabetes Federation, pp. 1, diciembre, \2018. [Online]. Available:

[7] “Departamento Administrativo Nacional de Estadísticas. Proyecciones de población. 2005 2016”, pp. 1, diciembre, 2018. [Online]. Available in:

[8] P. Aschner, “Epidemiología de la diabetes en Colombia,” Avances en diabetología, vol. 26, no 2, pp. 71-134, abril. 2010. [Online]. Available in: doi:\/s1134-3230(10)62005-4

[9] P. López, C.Calderón, J. Castillo, I. Escobar, E. Melgarejo, and G. Parra, “Prediabetes in Colombia: Expert Consensus,” Colombia MéDica, vol. 48, no. 4, pp. 191-203, 2017. [Online]. Available: doi:\/cm.v48i4.3662

[10] J. Ojeda González y E. Dávila, “Valoración anestésica del paciente diabético,” MediSur, vol. 10, no. 3. pp. 245-258, mayo-jun. 2012. [Online]. Available in: ISSN: 1727-897X

[11] M. Feldgen, “Internet de las Cosas y los ciudadanos,” Tecnología y Sociedad, vol. 7, pp. 27-48, 2018.

[12] S. C. Chen, H. Xu, D. Liu, B. Hu and H. Wang, "A Vision of IoT: Applications, Challenges, and Opportunities with China Perspective," IEEE Internet of Things Journal, vol. 1, no. 4, pp. 349-359, 2014. doi:\/jiot.2014.2337336

[13] K. Rose, S. Eldridge y L. Chapin, “La Internet De Las Cosas - Una Breve Reseña,” Internet Society, pp. 1, octubre. 2015. [Online]. Available in:

[14] Área Tecnología, “Internet de las Cosas,” pp. 1, marzo. 2019. [Online]. Available in:

[15] M. Maksimović, "The roles of Nanotechnology and Internet of Nano things in healthcare transformation," TecnoLógicas, vol. 20, no. 40, pp. 139-153, Dec. 2017. [Online]. Available: doi:\/22565337.720

[16] D. Ezquerra, À. Fabregas, M. Toro y J. Borrell, "Un Enfoque Tolerante a Interrupciones para la Seguridad de la Internet de las Cosas," RECSI, pp. 1, Sept. 2014. [Online]. Available in: ISBN: 978-84-9717-323-0

[17] P. Raut y N. Sarwade, “Study of environmental effects on the connectivity of molecular communication based Internet of Nano things,” 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 1123-1128. doi:\/wispnet.2016.7566311

[18] A. Cruz y A. Mainor, “Internet de las nano-cosas: estado del arte y tendencias,” Especialista en Redes y Seguridad. Buenos Aires, Argentina: Universidad Nacional De La Plata Facultad De Informática. p. 1, 2017.

[19] S. J. Lee, C. Jung. K. Choi, and S. Kim, "Design of Wireless Nanosensor Networks for Intrabody Application," International Journal of Distributed Sensor Networks. pp. 1-12, Jul. 2015. [Online]. Available: doi:

[20] I. F. Akyildiz, M. Pierobon, S. Balasubramaniam, and Y. Koucheryavy, “The internet of Bio-Nano things,” Nano Commun, vol. 53, pp. 32 - 40, 2015. doi:\/mcom.2015.7060516

[21] B. Bushan, “Springer Handbook of Nanotechnology,” Springer Handbooks, pp. 1, 2010. doi:\/978-3-642-02525-9

[22] T. Nakano, A.W. Eckford, and T. Haraguchi, “Molecular communication”. UK: Cambridge Press, pp. 1, 2013. doi:\/cbo9781139149693.005

[23] T. Nakano, M. Moore, Y. Okaie, A. Enomoto, and T. Suda, “Swarming biological nanomachines through molecular communication for targeted drug delivery,” 6th International Conference on Soft Computing and Intelligent Systems/13th International Symposium on Advanced Intelligent Systems (SCIS- ISIS 2012), pp. 2317-2320, 2012.

[24] K.Cai, A. Z. Wang, L. Yin, and J. Cheng, "Bio-nano interface: the impact of biological environment on nanomaterials and their delivery properties," Journal of Controlled Release, vol. 263, pp. 211-222. 2017. [Online]. Available: doi:

[25] J. P. Bermeo y C. F. Sánchez, "Modelamiento y simulación de la contracción muscular mediante la estimulación magnética externa,” p. 21, 2017. [Online]. Available in:

[26] J. A. Martín, “La grandeza de lo pequeño”, El mundo, pp. 1, enero. 2019. [Online]. Available in:

[27] J. Martin, C. Briones, E. Casero y P. Serena, “Nano-ciencia y Nano-tecnología: Entre la ciencia ficción del presente y la tecnología del futuro. Publicación de la Fundación Española para la Ciencia y la Tecnología,” Cultura científica, pp. 23, 2009. ISBN: 978-84-691-7266-7

[28] Euroresidentes, “¿Qué es la Nanotecnología?,” p. 1, enero, 2019. [Online]. Available in:

[29] A. Hernandez, “Breve estudio de las implicaciones sociales de la nanociencia y la nanotecnología,” Razón y Palabra, no. 68, pp. 1, 2009.

[30] N. Takeuchi y M. E. Mora Ramos, “Divulgación y formación en nanotecnología en México,” Mundo Nano. Revista Interdisciplinaria en Nanociencia y Nanotecnología, vol. 4, no. 2, pp. 1, julio-diciembre, 2011.

[31] G. N. Calle, “Nanotecnología Conceptos Generales,” RITS, no. 5, pp. 7-9, nov. 2010.

[32] H. Bouwmeester, S. Dekkers, M. Noordam, W. Hagens, A. Bulder, C. Heer, S. E. Ten, S. W. Wijnhoven, H. J. Marvin, and A. J. Sips, “Review of health safety aspects of nanotechnologies in food production,” Regul Toxicol Pharmacol, vol. 53, no. 1, pp. 52-62, 2009. doi:\/j.yrtph.2008.10.008

[33] L. M. Lechuga, “Nanomedicina: aplicación de la nanotecnología en la salud,” Biotecnología Aplicada a la Salud Humana, no. 9, pp. 1, 2011. ISBN: 978-84-7877-658-0

[34] H. Pastrana y A. Avila, “Nanomedicina: Estado del arte,” Revista de Ingeniería Universidad de los Andes, no. 25, pp. 60-69, mayo, 2007. ISSN: 0121-4993

[35] S. Fedorovich, A. Alekseenko, and T. Waseem, “Are synapses targets of nanoparticles?,” Biochem Soc Trans., vol. 38, no. 2, pp. 536-538, 2010. doi:\/bst0380536

[36] N. Pájaro, J. O. Verbel, y J. Redondo, "Nanotecnología aplicada a la medicina," Revista Científica Guillermo de Ockham, no. 11. pp. 125-133, junio, 2013. doi:\/22563202.606

[37] P. Boisseau and B. Loubatonb, “Nanomedicine, nanotechnology in medicine,” CR Physique, vol. 12, no. 7, pp. 620-636, 2011.

[38] L. Lechuga y C. M., “Nanotecnología: avances diagnósticos y terapeúticos,” Revista madrid, no. 35, p. 1, 2006. ISSN: 1579-9506

[39] R. Muñoz, Nanomedicina y sensores: alcance de la nanotecnología para el monitoreo y control de la glucosa en pacientes con diabetes, Colombia: Universidad Nacional, p. 1.

[40] S. Calechman, “Finding the Molecular Needle in the Haystack,” MIT, p. 1, septiembre. 2018. [Online]. Available: doi:

[41] “Nanosensores biológicos,” Euroresidentes, p. 1, diciembre. 2018, [En línea]. Disponible en:

[42] K. Stylios, V. Giannoudis, and T. Wan, “Applications of nanotechnologies in medical practice,” Injury, Int J Care Inju., vol. 36, no. 4, pp 6-13, 2005. doi:\/j.injury.2005.10.011

[43] S. Sahoo, S. Parveen and J. Panda, “The present and future of nanotechnology in human health Care,” Nanomedicine: NBM., vol. 3, no. 1, pp. 20-31, 2007. doi:\/j.nano.2006.11.008

[44] J. Pickup, Z. Zhi, F. Khan, T. Saxl and D. Birch, “Nanomedicine and its potential in diabetes research and practice,” Diabetes Metab. Res Rev., vol. 24, no. 8, pp. 604-610, 2008.

[45] A. Galal and X. Hesselbach, “Nano-networks communication architecture: Modeling and functions,” Nano Communication Networks, vol. 17, pp. 45-62, septiembre. 20018. doi:

[46] I. F. Akyildiz, J. M. Jornet, and M. Pierobon, “Nanonetworks: A new frontier in communications Commun,” ACM, vol 54, no 11, pp. 84-89, 2011. doi:\/2018396.2018417

[47] K. Dabhi and A. Maheta, “Internet of Nano Things-The Next Big Thing,” IJESC, vol. 7, no 4, pp, 10602-10604, 2017.

[48] J. M. Jornet Montana, “Fundamentals of electromagnetic nanonetworks in the terahertz band,” Doctoral dissertation, Georgia Institute of Technology, 2013. doi:\/1300000045

[49] Q. H. Abbasi, K. Yang, N. Chopra, J. M. Jornet, N. A.Abuali, K. A. Qaraqe, and A. Alomainy, “Nano-communication for biomedical applications: A review on the state-of-the-art from physical layers to novel networking concepts,” IEEE Access, vol 4, pp. 3920-3935, 2016. doi:\/access.2016.2593582

[50] S. Balasubramaniam and J. Kangasharju, “Realizing the internet of nano things: Challenges, solutions, and applications,” Computer, vol. 46, no. 2, pp. 62-68, 2013. doi:\/mc.2012.389

[51] P. Wang, J. M. Jornet, M. A. Malik, N. Akkari, and I. F. Akyildiz, “Energy and spectrum-aware MAC protocol for perpetual wireless nanosensor networks in the Terahertz Band,” Ad Hoc Networks, vol 11, no 8, pp. 2541-2555, 2013. doi: 10.1016\/j.adhoc.2013.07.002

[52] J. M. Jornet and I. F. Akyildiz, “Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band,” IEEE Transactions on Wireless Communications, vol 10, no 10l, pp. 3211-3221, 2011. doi:\/twc.2011.081011.100545

[53] J. M. Jornet, J. C. Pujol, and J. S. Pareta. Phlame, “A physical layer aware mac protocol for electromagnetic nanonetworks in the terahertz band,” Nano Communication Networks, vol 3 no 1, pp. 74-81, 2012. doi:\/j.nancom.2012.01.006

[54] J. M. Jornet, and I. F. Akyildiz, “Information capacity of pulse-based wireless nanosensor networks. In Sensor, Mesh and Ad Hoc Communications and Networks (SECON). 2011,” 8th Annual IEEE Communications Society Conference, pp. 80-88, 2011. ISBN: 978-1-4577-0093-4

[55] J, M. Vizcaya, Soluciones de gestión de redes, pp. 19-24, abril. 2016. [Online]. Available in:

[56] C. Vicente, Servicios de red: gestión de traps SNMP, p. 1, 2018. [Online]. Available in:

[57] PANDORA FMS, Documentation: Guía de administración Pandora FMS 7.0 NG Versión, pp. 1, 2018. [Online]. Available in:

[58] IBM, Guía de analizadores y pasarelas Tivoli Netcool/OMNIbus versión 8.1, pp. 1, 2018

[59] D. A. Maldonado, “Diseño e implementación de una aplicación de red bajo la arquitectura SDN,” Master's thesis, Facultad de Ingeniería, pp. 1, 2018.

[60] Fundation, O. N., Software-defined networking, The new norm for networks. ONF White Paper, vol 2, pp. 2-6, 2012.

[61] IBM, Documentation: Quick Start Guide Netcool/OMNIbus versión 8.1, pp. 1, 2018. [Online]. Available:

[62] L. J. Calderón, Implementación de Ibm Tivoli Netcool Omnibus para la gestión de fallas de una red LTE en una solución de gestión unificada de servicios de telecomunicaciones, p. 1, 2018.

[63] Nagios, Documentation: Overview, pp. 1, 2018. [Online]. Available:

[64] IBM, Documentation: Quick Start Guide Netcool/Impact versión 7.1, pp. 1, 2018. [Online]. Available:

[65] A. Nayyar, V. Puri, and D. Le, “Internet of nano things (IoNT): Next evolutionary step in nanotechnology. Nanosci,” Nanotechnol, vol. 7, no 1, pp. 4-8, 2017. [Online]. Available: . doi: 10.5923/j.nn.20170701.02

[66] Y. S. Mezaal, L. N Yousif, Z. j. Abdulkareem, H. A. Hussein and S. K. Kgaleel, “Review about effects of IOT and Nano-technology techniques in the development of IONT in wireless systems,” International Journal of Engineering & Technology, vol. 7, no. 4, pp. 3602-3606. 2018. [Online]. Available: