Automatic Control System for Climate Variables to Optimize Greenhouse Crop Yields
Main Article Content
Abstract
Introduction: The article derives from the research “Design of a system for the control and automation of temperature, soil moisture, and relative humidity to optimize greenhouse crop yields at Corhuila” conducted at Corporación Universitaria del Huila between 2016 and 2017.
Aim: To improve growth rates of greenhouse crops.
Methods: The study was based on a comparison of growth and number of fruits between greenhouse and outdoor tomato crops; said items were monitored weekly by direct observation of the two groups of crops.
Results: Development during the first five weeks was similar; as of the seventh week, the greenhouse crop had 38% more branches, equal number of fruits and was 28% higher; on week 13, the differences increased to 64% in the number of branches, 65% in the number of fruits and 55% in height.
Conclusion: It was proved that the implementation of this technological solution can promote an increase in the growth and production rate reached by plants.
Originality: Development of an electronic system for the agricultural sector in an intermediate region of Colombia to improve the efficiency of crops.
Limitations: The lack of Internet access made it impossible to implement a web-based control system.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Cession of rights and ethical commitment
As the author of the article, I declare that is an original unpublished work exclusively created by me, that it has not been submitted for simultaneous evaluation by another publication and that there is no impediment of any kind for concession of the rights provided for in this contract.
In this sense, I am committed to await the result of the evaluation by the journal Ingeniería Solidaría before considering its submission to another medium; in case the response by that publication is positive, additionally, I am committed to respond for any action involving claims, plagiarism or any other kind of claim that could be made by third parties.
At the same time, as the author or co-author, I declare that I am completely in agreement with the conditions presented in this work and that I cede all patrimonial rights, in other words, regarding reproduction, public communication, distribution, dissemination, transformation, making it available and all forms of exploitation of the work using any medium or procedure, during the term of the legal protection of the work and in every country in the world, to the Universidad Cooperativa de Colombia Press.
References
[2] M. Rodríguez, H. Chagolla y M. López “Diseño Conceptual de Sistema para la Automatización del Invernadero uno de la Universidad Tecnológica del Suroeste de Guanajuato”, In Ciencias de la Ingeniería y Tecnología Handbook T-IV: Congreso Interdisciplinario de Cuerpos Académicos, pp. 299-318, 2014. https://www.ecorfan.org/handbooks/Ciencias%20de%20la%20Ingenieria%20y%20Tecnologia%20T-IV/Articulo_28.pdf
[3] F. Chen, L. Qin, X. Li, G. Wu and C. Shi, "Design and implementation of ZigBee wireless sensor and control network system in greenhouse," 2017 36th Chinese Control Conference (CCC), Dalian, 2017, pp. 8982-8986. https://sci-hub.cc/10.23919/ChiCC.2017.8028786
[4] C. Lu, G. Zhang, C. Du and J. Cheng, "Design of closed-loop feedback control system for mini greenhouse illumination based on PWM," 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC), Hefei, 2017, pp. 541-543. https://sci-hub.cc/10.1109/YAC.2017.7967469
[5] C. L. Walthall et al., “Climate Change and Agriculture in the United States: Effects and Adaptation,” USDA Tech. Bull. 1935, no. February, p. i-186, 2013. https://doi.org/10.1017/CBO9781107415324.004.
[6] A. Calzadilla, T. Zhu, K. Rehdanz, R. S. J. Tol, and C. Ringler, “Economywide impacts of climate change on agriculture in Sub-Saharan Africa,” Ecol. Econ., vol. 93, pp. 150–165, 2013. https://doi.org/10.1016/j.ecolecon.2013.05.006.
[7] W. Baudoin, R.. Nono-Womdim, N. Lutaladio, A. Hodder, N. Castilla, C. Leonardi, & R. Duffy , “Good Agricultural Practices for Greenhouse Vegetable Crops: Principles for Mediterranean Climate Areas,” in FAO Plant Production and Protection Paper-Greenhouse design and covering materials, 2013. http://www.fao.org/docrep/018/i3284e/i3284e.pdf#page=79.
[8] V. Velasco and A. Mauricio, "Estudio de la agricultura de precisión enfocado en la implementación de una red de sensores inalámbricos (WSN) para el monitoreo de humedad y temperatura en cultivos – caso de estudio hacienda Cabalinus ubicada en la provincia de Los Ríos," Revista Politécnica, vol. 38, no. 1, 2016. http://repositorio.puce.edu.ec/handle/22000/11112.
[9] A. Cama, Fr. Gil, J. Gómez, A. García, and F. Manzano, “Sistema inalámbrico de monitorización para cultivos en invernadero,” Dyna, vol. 81, no. 184, pp. 164–170, 2014. http://www.redalyc.org/html/496/49630405023/
[10] N. D. Castro C., L. E. Chamorro F., and C. A. Viteri M., “Una red de sensores inalámbricos para la automatización y control del riego localizado,” Rev. Ciencias Agrícolas, vol. 33, no. 2, p. 106, 2016. http://www.scielo.org.co/pdf/rcia/v33n2/v33n2a10.pdf http://dx.doi.org/10.22267/rcia.163302.57
[11] J. Cede, M. Zambrano, and C. Medina, “Redes inalámbricas de sensores eficientes para la agroindustria,” Prisma, vol. 5, pp. 22–25, 2014. http://www.revistas.utp.ac.pa/index.php/prisma/article/download/518/513.
[12] DANE, “El cultivo del tomate de mesa bajo invernadero, tecnología que ofrece mayor producción, calidad e inocuidad del producto,” Boletín Mensual - Insumos y factores asociados a la producción agropecuaria. p. 72, 2014. https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/insumos_factores_de_produccion_dic_2014.pdf