Automatic Control System for Climate Variables to Optimize Greenhouse Crop Yields

Main Article Content

Álvaro Hernán Alarcón López
Geyni Arias Vargas
Cristian Javier Díaz Ortíz
Juan David Sotto Vergara

Abstract

Introduction: The article derives from the research “Design of a system for the control and automation of temperature, soil moisture, and relative humidity to optimize greenhouse crop yields at Corhuila” conducted at Corporación Universitaria del Huila between 2016 and 2017.


Aim: To improve growth rates of greenhouse crops.


Methods: The study was based on a comparison of growth and number of fruits between greenhouse and outdoor tomato crops; said items were monitored weekly by direct observation of the two groups of crops.


Results: Development during the first five weeks was similar; as of the seventh week, the greenhouse crop had 38% more branches, equal number of fruits and was 28% higher; on week 13, the differences increased to 64% in the number of branches, 65% in the number of fruits and 55% in height.


Conclusion: It was proved that the implementation of this technological solution can promote an increase in the growth and production rate reached by plants.


Originality: Development of an electronic system for the agricultural sector in an intermediate region of Colombia to improve the efficiency of crops.


Limitations: The lack of Internet access made it impossible to implement a web-based control system.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Alarcón L´ppez Álvaro H., Arias VargasG., Díaz OrtízC. J., and Sotto VergaraJ. D., “Automatic Control System for Climate Variables to Optimize Greenhouse Crop Yields”, ing. Solidar, vol. 14, no. 24, pp. 1-11, Jan. 2018.
Section
Research Articles

References

[1] P. Muñoz y J. Buitrago “Perfiles de temperatura y humedad relativa dentro del invernadero de la unidad agroecológica La Aldana de la Universidad del Quindío”, IngEam, vol. 2, n.° 2, pp. 90-114, 2015. http://www.eam.edu.co/ojs/index.php/ingeam/article/view/96/103

[2] M. Rodríguez, H. Chagolla y M. López “Diseño Conceptual de Sistema para la Automatización del Invernadero uno de la Universidad Tecnológica del Suroeste de Guanajuato”, In Ciencias de la Ingeniería y Tecnología Handbook T-IV: Congreso Interdisciplinario de Cuerpos Académicos, pp. 299-318, 2014. https://www.ecorfan.org/handbooks/Ciencias%20de%20la%20Ingenieria%20y%20Tecnologia%20T-IV/Articulo_28.pdf

[3] F. Chen, L. Qin, X. Li, G. Wu and C. Shi, "Design and implementation of ZigBee wireless sensor and control network system in greenhouse," 2017 36th Chinese Control Conference (CCC), Dalian, 2017, pp. 8982-8986. https://sci-hub.cc/10.23919/ChiCC.2017.8028786

[4] C. Lu, G. Zhang, C. Du and J. Cheng, "Design of closed-loop feedback control system for mini greenhouse illumination based on PWM," 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC), Hefei, 2017, pp. 541-543. https://sci-hub.cc/10.1109/YAC.2017.7967469

[5] C. L. Walthall et al., “Climate Change and Agriculture in the United States: Effects and Adaptation,” USDA Tech. Bull. 1935, no. February, p. i-186, 2013. https://doi.org/10.1017/CBO9781107415324.004.

[6] A. Calzadilla, T. Zhu, K. Rehdanz, R. S. J. Tol, and C. Ringler, “Economywide impacts of climate change on agriculture in Sub-Saharan Africa,” Ecol. Econ., vol. 93, pp. 150–165, 2013. https://doi.org/10.1016/j.ecolecon.2013.05.006.

[7] W. Baudoin, R.. Nono-Womdim, N. Lutaladio, A. Hodder, N. Castilla, C. Leonardi, & R. Duffy , “Good Agricultural Practices for Greenhouse Vegetable Crops: Principles for Mediterranean Climate Areas,” in FAO Plant Production and Protection Paper-Greenhouse design and covering materials, 2013. http://www.fao.org/docrep/018/i3284e/i3284e.pdf#page=79.

[8] V. Velasco and A. Mauricio, "Estudio de la agricultura de precisión enfocado en la implementación de una red de sensores inalámbricos (WSN) para el monitoreo de humedad y temperatura en cultivos – caso de estudio hacienda Cabalinus ubicada en la provincia de Los Ríos," Revista Politécnica, vol. 38, no. 1, 2016. http://repositorio.puce.edu.ec/handle/22000/11112.

[9] A. Cama, Fr. Gil, J. Gómez, A. García, and F. Manzano, “Sistema inalámbrico de monitorización para cultivos en invernadero,” Dyna, vol. 81, no. 184, pp. 164–170, 2014. http://www.redalyc.org/html/496/49630405023/

[10] N. D. Castro C., L. E. Chamorro F., and C. A. Viteri M., “Una red de sensores inalámbricos para la automatización y control del riego localizado,” Rev. Ciencias Agrícolas, vol. 33, no. 2, p. 106, 2016. http://www.scielo.org.co/pdf/rcia/v33n2/v33n2a10.pdf http://dx.doi.org/10.22267/rcia.163302.57

[11] J. Cede, M. Zambrano, and C. Medina, “Redes inalámbricas de sensores eficientes para la agroindustria,” Prisma, vol. 5, pp. 22–25, 2014. http://www.revistas.utp.ac.pa/index.php/prisma/article/download/518/513.

[12] DANE, “El cultivo del tomate de mesa bajo invernadero, tecnología que ofrece mayor producción, calidad e inocuidad del producto,” Boletín Mensual - Insumos y factores asociados a la producción agropecuaria. p. 72, 2014. https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/insumos_factores_de_produccion_dic_2014.pdf