Cloud Business Intelligence and Analytics Model for smes in the Retail Sector in Peru
PDF (Español (España))
HTML (Español (España))


business intelligence

How to Cite

M. E. López Inga and R. M. Guerrero Huaranga, “Cloud Business Intelligence and Analytics Model for smes in the Retail Sector in Peru”, ing. Solidar, vol. 14, no. 24, pp. 1-17, Jan. 2018.


Introduction: This article derives from the research “Cloud business intelligence and analytics model for smes in the retail sector in Peru” conducted in 2016 at the School of Engineering, Universidad Peruana de Ciencias Aplicadas (UPC) in Lima, Peru.

Problem: The research papers reviewed determine that Peruvian retail smes have a considerable need for information for decision making in inventory planning and management. Aim: To design a technological model that allows to implement a business intelligence and analytics solution using cloud computing services.

Methods: We started from a literature review on the benefits of migration to and implementation of cloud business intelligence and analytics in North American, European and Asian SMES. Based on this, a technological model aimed at Peruvian retail smes was proposed and each of its components described.

Results: The model was validated both through its implementation in a Peruvian retail SME in which financial indicators were assessed and through surveys of technology experts.

Conclusion: The model allows smes to integrate and process their data in order to obtain relevant and timely information for inventory optimization.

Originality: The literature on this type of implementation in Peruvian retail smes aimed at improving decision making is scarce.

Limitations: The proposed model is only applicable to retail smes that use transactional systems to record their operations.
PDF (Español (España))
HTML (Español (España))


[1] INEI Perú, “Micro, pequeña y medianas empresas concentran 20% de las ventas,”. Lima, Perú. pp. 1-2, Sep, 2013. Disponible en:

[2] I. Morales y J. Huamaní, “Implementación de un modelo de business intelligence orientado a tecnología Mobile basado en SAP Businessobjects para PYMES del sector retail,” Tesis, Facultad de Ing. De Sistemas de Información, UPC, Lima, Perú,pp. 70-78, 2016. Disponible en:

[3] R.A. Sheikh, “SaaS BI: Sustainable business intelligence solution for SMB’s”. In International Journal of Research in Finance & Marketing, vol 1, no 3,pp. 1-11, 2011. Disponible en:

[4] A. Huapaya, “PYMES: realidad, problemas y alternativas ineludibles de solución,” Revista Alternativa Financiera, vol. 4, no 4, pp. 15-18, Sep. 2007. Disponible en:

[5] Arrieta E, Propuesta de mejora en un operador logístico: análisis, evaluación y mejora de los flujos logísticos de su centro de distribución (Tesis de pregrado). PUCP. Lima, Perú.pp. 3, 2013. Disponible en:

[6] A. Agostino, K. S. Søilen y B. Gerritsen, "Cloud solution in Business Intelligence for SMEs–vendor and customer perspectives,” Journal of Intelligence Studies in Business, vol. 3, no. 3, pp. 5-28, Dic. 2013. Disponible en:

[7] D. Pooja Thakare y M. Priyanka, "Role of Cloud Computing in Business Intelligence: A Review," International Journal of Emerging Technology and Advanced Engineering, vol. 4, no. 3, pp. 428-437, Mar. 2014. Disponible en:

[8] D. Gash, T. Ariyachandra y M. Frolick, "Looking to the clouds for business intelligence," Journal of Internet Commerce, vol. 10, no.4, pp-261-269, Oct. 2011. Disponible en:

[9] L. Menon, B. Rehani y S. Gund, "Business Intelligence on the Cloud Overview, Use Cases and RoI," en IJCA Proceedings on National Conference on Communication Technologies & its impact on Next Generation Computing, pp. 25-30, 2012. Disponible en:

[10] G. Muriithi y E. Kotzé, "A conceptual framework for delivering cost effective business intelligence solutions as a service," en Proceedings of the South African Institute for Computer Scientists and Information Technologists Conference, East London, Sudáfrica, pp.96-100, 2013. Disponible en:

[11] P. Ramos, J. M. Soares y P. Silva, "Predictive maintenance of production equipment based on neural network autoregression and ARIMA," en 21st International EurOMA ConferenceOperations Management in an Innovation Economy, Palermo, Italia, pp. 20-25, Jun. 2014. Disponible en:

[12] M. Nyblom, J. Behrami, T. Nikkilä y K. S. Søilen, "An evaluation of Business Intelligence Software systems in SMEs– a case study," en Journal of Intelligence Studies in Business. vol. 2, no. 2, pp. 51-57, May. 2012. Disponible en:

[13] J. Castillo y L. Palomino, "Implementación de un Datamart como una solución de Inteligencia de Negocios para el área de logística de T-Impulso," Revista de investigación de Sistemas e Informática, vol. 10, no. 1, pp. 53-63, Jun. 2013. Disponible en:

[14] S. Bijaksic, B. Markic y A. Bevanda, "Business Intelligence and analysis of selling in retail," en Informatologia, vol. 47, no. 4, pp.222-231, Dec. 2014. Disponible en:

[15] Mircea, B. Ghilic-Micu y M. Stoica, "Combining business intelligence with cloud computing to delivery agility in actual economy," en Journal of Economic Computation and Economic Cybernetics Studies, vol. 45, no 1, pp. 39-54, Jan. 2011. Disponible en:

[16] Y. S. Gurjar y V. S. Rathore, "Cloud business intelligence–is what business need today," en International Journal of Recent Technology and Engineering, vol. 1, no. 6, pp. 81-86. Jan. 2013. Disponible en:

[17] C. M. Olszak y E. Ziemba, "Critical success factors for implementing business intelligence systems in small and medium enterprises on the example of upper Silesia, Poland," en Interdisciplinary Journal of Information, Knowledge, and Management, vol. 7, no. 12, pp. 129-150, 2012. Disponible en: 264707416_Critical_Success_Factors_for_Implementing_Business_Intelligence_Systems_in_Small_and_Medium_Enterprises_on_the_Example_of_Upper_Silesia_Poland

[18] K. Rostek, M. Wiśniewski y A. Kucharska, "Cloud business intelligence for SMEs consortium," en Foundations of Management, vol. 4, no. 1, pp. 105-122, Jun. 2012. Disponible en:

[19] M. Muntean, "Considerations Regarding Business Intelligence in Cloud Context," en Informatica Economica, vol. 19, no. 4, pp. 55-67, Oct. 2015. Disponible en:

[20] J. Parenteau, et al. "Magic Quadrant for Business Intelligence and Analytics Platforms," Gartner, Connecticut, USA,2016, pp. 60, Feb. 2016. Disponible en: magicuadrantbusiness-intelligence-analytics

[21] H. Dresner, J. Ericson “Cloud Computing and business Intelligence market study”, Dresner Advisory Services, LLC, pp. 19-22. Disponible en:

[22] IBM "Cloud Computing Reference Architecture (CCRA) 4.0 Overview”, IBM White Paper, 2014, pp. 6. Disponible en:

[23] R. Kimball y M. Ross, “The data warehouse toolkit: the definitive guide to dimensional modeling,” 3 rd ed., John Wiley & Sons. USA. 2013. Pp. 28-31.

[24] INEI Perú “, Perú: Tecnología de información y Comunicación en las empresas,” en Perú: Tecnología de Información y Comunicación en las empresas, EEA 2014.pp. 10 -14. Disponible en:

[25] IPSOS Uso de TI en PYMES, [Online]. Accedido: Nov, 2016. Pp. 1-3 Disponible en:

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Download data is not yet available.


Metrics Loading ...