• Investigación

    Frequency regulation in power systems that integrate wind energy sources through a pi controller and inertial emulation

    Vol. 13 No. 23 (2017)
    Published: 2017-09-01
    Nelson Gómez Molina
    Universidad Nacional de Colombia
    Sergio Raúl Rivera Rodríguez
    Universidad Nacional de Colombia
    Introduction: This article derives from the research “Multilevel Control for Microgrids Dispatch Considering Stability Issues through mpc -based Frequency Regulation” conducted at the Universidad Nacional de Colombia during 2016 and the first half of 2017. It presents the study and analysis of a frequency regulation control scheme implemented in a power system that integrates renewable energy sources (res). The objective is to improve the reliability and stability of the grid against typical disturbances of renewable energies. Methodology: Initially, the dynamic response of the power system to sudden disturbances and continuous change was simulated to observe frequency deviations. The control block was also implemented in the additional power loop to emulate inertia and, thus, slow down the response of the system. Subsequently, the control parameters were optimized through heuristic optimization algorithms to minimize the frequency signal error. Results: Using the heuristic optimization of proportional integral (pi) control parameters, it was verified that there is a reduction of more than 79 % in the maximum error of frequency deviation in relation to the open loop response, and more than 43 % with respect to pi control with referential gains. Conclusion: In implementing the additional power loop with pi control, a decrease in the frequency deviation error was found in relation to the open loop simulations, due to the additional power loop.
    Keywords: proportional integral control (PI), renewable energies, estimation, heuristics, frequency regulation,

    How to Cite

    [1]
    N. Gómez Molina and S. R. Rivera Rodríguez, “Frequency regulation in power systems that integrate wind energy sources through a pi controller and inertial emulation”, ing. Solidar, vol. 13, no. 23, pp. 7–28, Sep. 2017, doi: 10.16925/in.v23i13.1981.

    Unidad de Planeación Minero Energética. “Plan de Expansión de Referencia Generación Transmisión 2015 - 2029”, pp. 13-6, Bogotá, 2015. Disponible en http://www1.upme.gov.co/sala-de-prensa/fotonoti-cias/plan-de-expansion-2015-2029

    Unidad de Planeación Minero Energética - bid, “Integración de las energías renovables no convencionales en Colombia”, pp. 12-25, Bogotá, 2015. Disponible en http://www.upme.gov.co/Estudios/2015/Integra-cion_Energias_Renovables/INTEGRACION_EN-ERGIAS_RENOVANLES_WEB.pdf

    A. Ulbig, T. Rinke, S. Chatzivasileiadis y G. Ander-sson, “Predictive Control for Real-time Frequen-cy Regulation and Rotational Inertia Provision in Power Systems”. 2013 ieee 52nd Annual Conference on Decision and Control, 2013, pp. 2946-53. [Online]. doi: https://doi.org/10.1109/CDC.2013.6760331

    H. Bevrani, “Robust Power System Frequency Con-trol”, en Power Electronics and Power Systems. Nueva York: Springer, 2009, pp. 45-6. doi: https://doi.org/10.1007/978-0-387-84878-5

    L. Friedrich y M. Gautschi, “Grid Stabilization Con-trol and Frequency Regulation”. M Sc. Thesis. Swiss Federal Institute of Technology, 2009. Disponible en https://www.eeh.ee.ethz.ch/uploads/tx_ethpublica-tions/MA_LFriedrich_MGautschi.pdf

    A. Gómez-Exposito, A. J. Conejo y C. Canizares, Electric Energy Systems: Analysis and Operation, Boca Raton, crc Press, 2008, pp. 78-89. Disponible en https://www.crcpress.com/Electric-Energy-Sys-tems-Analysis-and-Operation/Exposito-Gomez-Ex-posito-Conejo-Conejo-Canizares-Canizares/p/book/9780849373657

    T. B. Rinke, mpc-based Frequency Regulation and Inertia Mimicking for Improved Grid Integration of Renewable Energy Sources, M. Sc. Thesis, Swiss Federal Institute of Technology, Zurich, 2011. [Online]. Disponible en https://www.ethz.ch/content/dam/ethz/special-inter-est/itet/institute-eeh/power-systems-dam/documents/SAMA/2011/Rinke-MA-2011.pdf

    D. Li, Q. Zhu, S. Lin y X. Y. Bian, “A Self-Adaptive Inertia and Damping Combination Control of vsg to Support Frequency Stability”, en ieee Transactions on Energy Conversion, vol. 32, n.º 1, March 2017, pp. 397-8. [Online]. doi: https://doi.org/10.1109/TEC.2016.2623982.

    J. Zhao, X. Lyu, Y. Fu, X. Hu y F. Li, “Coordinated Microgrid Frequency Regulation Based on dfig Variable Coefficient Using Virtual Inertia and Primary Frequency Control”, ieee Transactions on Energy Conversion, vol. 31, n.º 3, pp. 833-45, Sep. 2016. [Online]. doi: https://doi.org/10.1109/TEC.2016.2537539

    F. Teng y G. Strbac, “Assessment of the Role and Value of Frequency Response Support From Wind Plants”, ieee Transactions on Sustainable Energy, vol. 7, n.º 2, pp. 586-95, Apr. 2016. [Online]. doi: https://doi.org/10.1109/TSTE.2015.2505085.

    U. Andreas, T. S. Borsche y G. Andersson, “Impact of Low Rotational Inertia on Power System Stability and Operation”, ifac World Congress, 2014. [On-line]. Disponible en https://arxiv.org/abs/1312.6435

    Illinois Center for a Smarter Electric Grid (icseg), “ieee 14-Bus System”. Disponible en http://icseg.iti.illinois.edu/ieee-14-bus-system/

    Y. Reckinger, Control and Frequency Regulation for Distributed Renewable Energy Sources using the Ag-gregated Storage of large Fleets of Distributed, Mobile phevs, Semester Thesis. Swiss Federal Institute of Technology, pp. 34-47, 2010

    V. Miranda, “Differential Evolutionary Particle Swarm ion (Deepso): A Successful Hybrid”. bricsCongress on Computational Intelligence y 11th Brazilian Congress on Computational Intelli-gence, 2013, pp. 78-83. [Online]. doi: https://doi.org/10.1109/BRICS-CCI-CBIC.2013.68

    V. Miranda, y N. Fonseca, “epso – Best-of-Two-Worlds Metaheuristic Applied to Power System Problems”, Proceedings of World Conf. on Compu-tational Intelligence, Conf. on Evolutionary Com-putation, pp. 567-74, 2002. [Online]. doi: https://doi.org/10.1109/CEC.2002.1004393.

    Z. D. Zaharis et al., “Exponential Log-Periodic Antenna Design Using Improved Particle Swarm Optimization With Velocity Mutation”, ieeeTransactions on Magnetics, vol. 53, n.º 6, pp. 1-4, jun. 2017. [Online]. doi: https://doi.org/10.1109/TMAG.2017.2660061.

    H. Nunes, J. Pombo, J. Fermeiro, S. Mariano y M. D. R. Calado, “Particle Swarm Optimization for Photovoltaic Model Identification”, 2017 International Young Engineers Forum (yef-ece), pp. 53-8, 2017. [Online]. doi: https://doi.org/10.1109/YEF-ECE.2017.7935640

    X. Qiu, K. C. Tan y J. X. Xu, “Multiple Exponential Recombination for Differential Evolution”, ieee Transactions on Cybernetics, vol. 47, n.º 4, pp. 995-1006, abr. 2017. [Online]. doi: https://doi.org/10.1109/TCYB.2016.2536167.

    Q. Fan y X. Yan, “Self-Adaptive Differential Evolu-tion Algorithm With Zoning Evolution of Control Parameters and Adaptive Mutation Strategies”, ieeeTransactions on Cybernetics, vol. 46, n.º 1, pp. 219-32, en. 2016. [Online]. doi: https://doi.org/10.1109/TCYB.2015.2399478.

    MÉTRICAS
    ARTICLE VIEWS: 1159
    PDF VIEWS: 343
    Metrics
    Metrics Loading ...
    https://plu.mx/plum/a/?doi=10.16925/in.v23i13.1981