Toxinas de venenos de serpientes y escorpiones, una fuente natural de moléculas con actividad antimicrobiana

Leidy Johana Vargas*, Sebastian Estrada-Gómez, Julieta Vásquez-Escobar

Resumen


Propósito: Los venenos de animales constituyen una de las fuentes más ricas de sustancias activas biológicamente encontradas en la naturaleza. Dichas sustancias están presentes simultáneamente en un solo veneno garantizando la utilidad para el organismo productor del mismo. La mayoría de los componentes de estos venenos son polipéptidos, cuyo blanco son receptores específicos encontrados en la presa y es dicha precisión hacía los receptores lo que los convierte en sustancias con alto potencial terapéutico. Algunos polipéptidos activos han demostrado ser potenciales insecticidas y muy específicos en membranas bacterianas, ya que han sido selectivos contra bacterias Gram positivas o Gram negativas, y bacterias aerobias o anaerobias. Tema: Aquí se presenta una revisión bibliográfica de los últimos diez años acerca de toxinas y venenos de escorpiones y serpientes con actividad antimicrobiana. Desarrollo: La búsqueda bibliográfica se realizó en las plataformas Web of Science, PubMed y Science Direct. Con el ánimo de recabar la mayor información posible, en cada una de las mencionadas plataformas se usaron las siguientes palabras claves y operadores bolenaos para la búsqueda: “snake” OR scorpion, según cada caso de búsqueda, junto con las palabras “venom” AND “antimicrobial”, para el caso del término “antimicrobial”, este podía variar por “antibiotic”. De la búsqueda se excluyeron los términos “virus” AND “leishmania” AND plants. Hallazgos: se logran revisar aproximadamente 80 artículos científicos de los que se logra extraer la información más relevante correspondiente al tema de estudio. Conclusión: esta revisión busca aportar una visión actual del uso de algunas moléculas aisladas de venenos de serpientes y escorpiones como herramientas o modelos en diferentes campos, para la búsqueda de alternativas terapéuticas.

Palabras clave


venenos; antimicrobiano; serpientes; escorpiones

Texto completo:

PDF

Referencias


. Neu HC. The crisis in antibiotic resistance. Science. 1992;257(5073):1064-73

. Benavides-Plascencia L, Aldama-Ojeda AL, Vázquez HJ. Vigilancia de los niveles de uso de antibióticos y perfiles de resistencia bacteriana en hospitales de tercer nivel de la Ciudad de México. Salud Publica Mex 2005;47:219-26

. Michaut L, Fehlbaum P, Moniatte M, Van Dorsselaer A, Reichhart J-M, Bulet P. Determination of the disulfide array of the first inducible antifungal peptide from insects: drosomycin from Drosophila melanogaster. FEBS Letters. 1996;395(1):6-10. http://dx.doi.org/10.1016/0014-5793(96)00992-1

. Hancock REW, Lehrer R. Cationic peptides: a new source of antibiotics. Trends in Biotechnology. 1998;16(2):82-8. http://dx.doi.org/10.1016/S0167-7799(97)01156-6

. Epand RM, Vogel HJ. Diversity of antimicrobial peptides and their mechanisms of action. Biochimica et biophysica acta. 1999;1462(1-2):11-28

. Duarte MCT, Figueira GM, Sartoratto A, Rehder VLG, Delarmelina C. Anti-Candida activity of Brazilian medicinal plants. Journal of Ethnopharmacology. 2005;97(2):305-11. http://dx.doi.org/10.1016/j.jep.2004.11.016

. Bailey P, Wilce J. Venoms as a source of useful biologically active molecules. Emergency Medicine 2001;13: 28-36

. Ovechkina YY, Pettit RK, Cichacz ZA, Pettit GR, Oakley BR. Unusual antimicrotubule activity of the antifungal agent spongistatin 1. Antimicrobial agents and chemotherapy. 1999;43(8):1993-9

. Ondetti MA, Williams NJ, Sabo EF, Pluscec J, Weaver ER, Kocy O. Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca. Isolation, elucidation of structure, and synthesis. Biochemistry. 1971;10(22):4033-9

. Huang TF, Chang MC, Peng HC, Teng CM. A novel alpha-type fibrinogenase from Agkistrodon rhodostoma snake venom. Biochimica et biophysica acta. 1992;1160(3):262-8

. Furlan M, Beck EA. [Structural model of factor VIII complex]. Schweizerische medizinische Wochenschrift. 1976;106(40):1378

. Institute NH. Examples of Antimicrobial (Drug) Resistance 2015 [cited 2016 02/2016]. Available from: https://www.niaid.nih.gov/topics/antimicrobialresistance/examples/Pages/default.aspx.

. WHO. Strategy for Containment of Antimicrobial Resistance. Executive Summary: World Health Organization; 2001 [cited 2015 11/01]. Available from: http://www.who.int/drugresistance/WHO_Global_Strategy_English.pdf.

. Echavarría J, Iglesias D. Estafilococo Meticilino resistente, un problema actual en la emergencia de resistencia entre los Gram positivos. Revista Médica Herediana. 2003;14( 4):195-203

. Jaramillo EL. Resistencia bacteriana a los antibióticos en la Unidad de Cuidados Intensivos, Hospital de Caldas, 1992-1994. Colombia Médica 1996;27(2):69-76

. Vélez L. Terapia antimicrobiana. Fundamentos de medicina Enfermedades infecciosas 1. 5 ed. Medellín: CIB; 1996. p. 26-60.

. Katzung BG. Quimioterapéuticos In: Moderno EM, editor. Farmacología Básica y Clínica. 1. 9 ed2005. p. 730.

. Goodman LS, Gilman AG, Brunton LL, Lazo JS, Parker KL. Bases farmacológicas de la terapéutica. 11 ed. Mexico: McGraw-Hill Interamericana; 2007.

. Safrin S. Antivirales. In: Moderno EM, editor. Farmacología Básica y Clínica. 1. 9 ed2005. p. 793-5.

. de Lima DC, Alvarez Abreu P, de Freitas CC, Santos DO, Borges RO, Dos Santos TC, et al. Snake Venom: Any Clue for Antibiotics and CAM? Evidence-based complementary and alternative medicine:eCAM. 2005;2(1):39-47. doi:10.1093/ecam/neh063

. Shlyapnikov YM, Andreev YA, Kozlov SA, Vassilevski AA, Grishin EV. Bacterial production of latarcin 2a, a potent antimicrobial peptide from spider venom. Protein expression and purification. 2008;60(1):89-95. doi:10.1016/j.pep.2008.03.011

. Meier J, Stocker KF. Biology and distribution of venomous snakes of medical importance and the composition of snake venoms. In: White J, Meier J, editors. Handbook of Clinical Toxicology of Animal Venoms and Poisons: Taylor & Francis; 1995. p. 367-412.

. Blaylock RS. Antibacterial properties of KwaZulu natal snake venoms. Toxicon. 2000;38(11):1529-34

. Stiles BG, Sexton FW, Weinstein SA. Antibacterial effects of different snake venoms: purification and characterization of antibacterial proteins from Pseudechis australis (Australian king brown or mulga snake) venom. Toxicon. 1991;29(9):1129-41. doi:10.1016/0041-0101(91)90210-I

. Talan DA, Citron DM, Overturf GD, Singer B, Froman P, Goldstein EJ. Antibacterial activity of crotalid venoms against oral snake flora and other clinical bacteria. The Journal of infectious diseases. 1991;164(1):195-8. doi:10.1093/infdis/164.1.195

. Samy RP, Gopalakrishnakone P, Chow VT, Ho B. Viper metalloproteinase (Agkistrodon halys pallas) with antimicrobial activity against multi-drug resistant human pathogens. Journal of cellular physiology. 2008;216(1):54-68. doi:10.1002/jcp.21373

. Gutiérrez JM, Lomonte B. Phospholipase A2 myotoxins from Bothrops snake venoms. In: Kini RM, editor. Venom Phospholipase ASUB 2/SUB Enzymes: Structure, Function and Mechanism. Kini ed: Wiley; 1997. p. 321-52.

. Xu C, Ma D, Yu H, Li Z, Liang J, Lin G, et al. A bactericidal homodimeric phospholipases A2 from Bungarus fasciatus venom. Peptides. 2007;28(5):969-73. doi:10.1016/j.peptides.2007.02.008

. Santamaria C, Larios S, Angulo Y, Pizarro-Cerda J, Gorvel JP, Moreno E, et al. Antimicrobial activity of myotoxic phospholipases A2 from crotalid snake venoms and synthetic peptide variants derived from their C-terminal region. Toxicon. 2005;45(7):807-15. doi:10.1016/j.toxicon.2004.09.012

. Paramo L, Lomonte B, Pizarro-Cerda J, Bengoechea JA, Gorvel JP, Moreno E. Bactericidal activity of Lys49 and Asp49 myotoxic phospholipases A2 from Bothrops asper snake venom--synthetic Lys49 myotoxin II-(115-129)-peptide identifies its bactericidal region. European journal of biochemistry/FEBS. 1998;253(2):452-61. doi:10.1046/j.1432-1327.1998.2530452.x

. Santamaria C, Larios S, Quiros S, Pizarro-Cerda J, Gorvel JP, Lomonte B, et al. Bactericidal and antiendotoxic properties of short cationic peptides derived from a snake venom Lys49 phospholipase A2. Antimicrobial agents and chemotherapy. 2005;49(4):1340-5. doi:10.1128/AAC.49.4.1340-1345.2005

. Phillips AJ. Treatment of non-albicans Candida vaginitis with amphotericin B vaginal suppositories. American journal of obstetrics and gynecology. 2005;192(6):2009-12; discussion 12-3. doi:10.1016/j.ajog.2005.03.034

. Murillo LA, Lan CY, Agabian NM, Larios S, Lomonte B. Fungicidal activity of a phospholipase-A2-derived synthetic peptide variant against Candida albicans. Revista Española de Quimioterapia. 2007;20(3):330-3

. Stabeli RG, Amui SF, Sant'Ana CD, Pires MG, Nomizo A, Monteiro MC, et al. Bothrops moojeni myotoxin-II, a Lys49-phospholipase A2 homologue: an example of function versatility of snake venom proteins. Comparative biochemistry and physiology Toxicology & pharmacology : CBP. 2006;142(3-4):371-81.10.1016/j.cbpc.2005.11.020

. Foreman-Wykert AK, Weinrauch Y, Elsbach P, Weiss J. Cell-wall determinants of the bactericidal action of group IIA phospholipase A2 against Gram-positive bacteria. The Journal of clinical investigation. 1999;103(5):715-21. doi: 10.1172/jci5468

. Soares AM, Guerra-Sa R, Borja-Oliveira CR, Rodrigues VM, Rodrigues-Simioni L, Rodrigues V, et al. Structural and functional characterization of BnSP-7, a Lys49 myotoxic phospholipase A(2) homologue from Bothrops neuwiedi pauloensis venom. Archives of biochemistry and biophysics. 2000;378(2):201-9. doi:10.1006/abbi.2000.1790

. Nunez V, Arce V, Gutierrez JM, Lomonte B. Structural and functional characterization of myotoxin I, a Lys49 phospholipase A2 homologue from the venom of the snake Bothrops atrox. Toxicon. 2004;44(1):91-101. doi:10.1016/j.toxicon.2004.04.013

. Rodrigues VM, Marcussi S, Cambraia RS, de Araujo AL, Malta-Neto NR, Hamaguchi A, et al. Bactericidal and neurotoxic activities of two myotoxic phospholipases A2 from Bothrops neuwiedi pauloensis snake venom. Toxicon : official journal of the International Society on Toxinology. 2004;44(3):305-14. doi:10.1016/j.toxicon.2004.06.008

. Barbosa PS, Martins AM, Havt A, Toyama DO, Evangelista JS, Ferreira DP, et al. Renal and antibacterial effects induced by myotoxin I and II isolated from Bothrops jararacussu venom. Toxicon. 2005;46(4):376-86. doi: 10.1016/j.toxicon.2005.04.024

. Perumal Samy R, Pachiappan A, Gopalakrishnakone P, Thwin MM, Hian YE, Chow VT, et al. In vitro antimicrobial activity of natural toxins and animal venoms tested against Burkholderia pseudomallei. BMC infectious diseases. 2006;6:100. doi:10.1186/1471-2334-6-100

. Costa TR, Menaldo DL, Oliveira CZ, Santos-Filho NA, Teixeira SS, Nomizo A, et al. Myotoxic phospholipases A(2) isolated from Bothrops brazili snake venom and synthetic peptides derived from their C-terminal region: cytotoxic effect on microorganism and tumor cells. Peptides. 2008;29(10):1645-56. doi:10.1016/j.peptides.2008.05.021

. Vargas LJ, Londono M, Quintana JC, Rua C, Segura C, Lomonte B, et al. An acidic phospholipase A(2) with antibacterial activity from Porthidium nasutum snake venom. Comparative biochemistry and physiology Part B, Biochemistry & molecular biology. 2012;161(4):341-7. doi:10.1016/j.cbpb.2011.12.010

. Nair DG, Fry BG, Alewood P, Kumar PP, Kini RM. Antimicrobial activity of omwaprin, a new member of the waprin family of snake venom proteins. The Biochemical journal. 2007;402(1):93-104. doi:10.1042/BJ20060318

. Gomes VM, Carvalho AO, Da Cunha M, Keller MN, Bloch C, Jr., Deolindo P, et al. Purification and characterization of a novel peptide with antifungal activity from Bothrops jararaca venom. Toxicon. 2005;45(7):817-27. doi:10.1016/j.toxicon.2004.12.011

. Stabeli RG, Marcussi S, Carlos GB, Pietro RC, Selistre-de-Araujo HS, Giglio JR, et al. Platelet aggregation and antibacterial effects of an l-amino acid oxidase purified from Bothrops alternatus snake venom. Bioorganic & medicinal chemistry. 2004;12(11):2881-6. doi:10.1016/j.bmc.2004.03.049

. Ciscotto P, Machado de Avila RA, Coelho EA, Oliveira J, Diniz CG, Farias LM, et al. Antigenic, microbicidal and antiparasitic properties of an l-amino acid oxidase isolated from Bothrops jararaca snake venom. Toxicon. 2009;53(3):330-41. doi:10.1016/j.toxicon.2008.12.004

. Vargas Munoz LJ, Estrada-Gomez S, Nunez V, Sanz L, Calvete JJ. Characterization and cDNA sequence of Bothriechis schlegeliil-amino acid oxidase with antibacterial activity. International journal of biological macromolecules. 2014;69:200-7. doi:10.1016/j.ijbiomac.2014.05.039

. Vargas LJ, Quintana JC, Pereanez JA, Nunez V, Sanz L, Calvete J. Cloning and characterization of an antibacterial L-amino acid oxidase from Crotalus durissus cumanensis venom. Toxicon. 2013;64:1-11. doi:10.1016/j.toxicon.2012.11.027

. Tan NH, Fung SY. Snake Venom L-Amino Acid Oxidases. In: Mackessy SP, editor. Handbook of Venoms and Toxins of Reptiles: CRC Press; 2009. p. 221.

. Okubo BM, Silva ON, Migliolo L, Gomes DG, Porto WF, Batista CL, et al. Evaluation of an antimicrobial L-amino acid oxidase and peptide derivatives from Bothropoides mattogrosensis pitviper venom. PloS one. 2012;7(3):e33639. doi:10.1371/journal.pone.0033639

. Skarnes RC. L-amino-acid oxidase, a bactericidal system. Nature. 1970;225(5237):1072-3

. Wei JF, Wei Q, Lu QM, Tai H, Jin Y, Wang WY, et al. Purification, characterization and biological activity of an L-amino acid oxidase from Trimeresurus mucrosquamatus venom. Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica. 2003;35(3):219-24

. Liu JW, Chai MQ, Du XY, Song JG, Zhou YC. [Purification and characterization of L-amino acid oxidase from Agkistrodon halys pallas venom]. Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica. 2002;34(3):305-10

. Toyama MH, Toyama Dde O, Passero LF, Laurenti MD, Corbett CE, Tomokane TY, et al. Isolation of a new L-amino acid oxidase from Crotalus durissus cascavella venom. Toxicon. 2006;47(1):47-57. doi:10.1016/j.toxicon.2005.09.008

. Izidoro LF, Ribeiro MC, Souza GR, Sant'Ana CD, Hamaguchi A, Homsi-Brandeburgo MI, et al. Biochemical and functional characterization of an L-amino acid oxidase isolated from Bothrops pirajai snake venom. Bioorganic & medicinal chemistry. 2006;14(20):7034-43. doi:10.1016/j.bmc.2006.06.025

. Tonismagi K, Samel M, Trummal K, Ronnholm G, Siigur J, Kalkkinen N, et al. L-amino acid oxidase from Vipera lebetina venom: isolation, characterization, effects on platelets and bacteria. Toxicon. 2006;48(2):227-37. doi:10.1016/j.toxicon.2006.05.004

. Stabeli RG, Sant'Ana CD, Ribeiro PH, Costa TR, Ticli FK, Pires MG, et al. Cytotoxic L-amino acid oxidase from Bothrops moojeni: biochemical and functional characterization. International journal of biological macromolecules. 2007;41(2):132-40. doi:10.1016/j.ijbiomac.2007.01.006

. Rodrigues RS, da Silva JF, Boldrini Franca J, Fonseca FP, Otaviano AR, Henrique Silva F, et al. Structural and functional properties of Bp-LAAO, a new L-amino acid oxidase isolated from Bothrops pauloensis snake venom. Biochimie. 2009;91(4):490-501. doi:10.1016/j.biochi.2008.12.004

. Zhong SR, Jin Y, Wu JB, Jia YH, Xu GL, Wang GC, et al. Purification and characterization of a new L-amino acid oxidase from Daboia russellii siamensis venom. Toxicon. 2009;54(6):763-71.S0041-0101(09)00294-3 [pii]

doi: 10.1016/j.toxicon.2009.06.004

. Samel M, Tonismagi K, Ronnholm G, Vija H, Siigur J, Kalkkinen N, et al. L-Amino acid oxidase from Naja naja oxiana venom. Comparative biochemistry and physiology Part B, Biochemistry & molecular biology. 2008;149(4):572-80. doi:10.1016/j.cbpb.2007.11.008

. Costa Torres AF, Dantas RT, Toyama MH, Diz Filho E, Zara FJ, Rodrigues de Queiroz MG, et al. Antibacterial and antiparasitic effects of Bothrops marajoensis venom and its fractions: Phospholipase A2 and L-amino acid oxidase. Toxicon. 2010;55(4):795-804. doi:10.1016/j.toxicon.2009.11.013

. Sun MZ, Guo C, Tian Y, Chen D, Greenaway FT, Liu S. Biochemical, functional and structural characterization of Akbu-LAAO: a novel snake venom L-amino acid oxidase from Agkistrodon blomhoffii ussurensis. Biochimie. 2010;92(4):343-9. doi:10.1016/j.biochi.2010.01.013

. Lee ML, Tan NH, Fung SY, Sekaran SD. Antibacterial action of a heat-stable form of L-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom. Comparative biochemistry and physiology Toxicology & pharmacology: CBP. 2011;153(2):237-42. doi:10.1016/j.cbpc.2010.11.001

. Santibáñez-López EC, Francke FO, Ureta C, Possani DL. Scorpions from Mexico: From Species Diversity to Venom Complexity. Toxins. 2016;8(1).10.3390/toxins8010002

. Possani LD, Merino E, Corona M, Becerril B. Scorpion genes and peptides specific for potassium channels: Structure, function and evolution. In: André M, editor. Perspectives in molecular toxinology. England: John Wiley & Sons, Ltd; 2002. p. 200-14.

. Prendini L. Order Scorpiones. In: Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Auckland: Magnolia Press; 2011. [115-7].

. Cupitra NI, Cubides S, Saldarriaga-Córdoba MM, Estrada-Gómez S. Distribución de Centruroides edwardsii (GERVAIS, 1843) en el departamento en Antioquia, Colombia. Acta Biológica Colombiana. 2015;20(1):207-15. http://dx.doi.org/10.15446/abc.v20n1.42832.

. Estrada-Gómez S, Vargas Muñoz LJ, Saldarriaga-Córdoba M, Quintana Castillo JC. Venom from Opisthacanthus elatus scorpion of Colombia, could be more hemolytic and less neurotoxic than thought. Acta tropica. 2016;153:70-8. http://dx.doi.org/10.1016/j.actatropica.2015.09.019

. Dai L, Corzo G, Naoki H, Andriantsiferana M, Nakajima T. Purification, structure-function analysis, and molecular characterization of novel linear peptides from scorpion Opisthacanthus madagascariensis. Biochemical and biophysical research communications. 2002;293(5):1514-22. doi:10.1016/S0006-291X(02)00423-0

. Harrison PL, Abdel-Rahman MA, Miller K, Strong PN. Antimicrobial peptides from scorpion venoms. Toxicon. 2014;88:115-37. doi:10.1016/j.toxicon.2014.06.006

. Torres-Larios A, Gurrola GB, Zamudio FZ, Possani LD. Hadrurin, a new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus. European journal of biochemistry/FEBS. 2000;267(16):5023-31 doi:10.1046/j.1432-1327.2000.01556.x

. Giangaspero A, Sandri L, Tossi A. Amphipathic alpha helical antimicrobial peptides - A systematic study of the effects of structural and physical properties on biological activity. European Journal of Biochemistry. 2001;268(21):5589-600. doi: 10.1046/j.0014-2956.2001.02494.x

. Bulet P, Stocklin R. Insect antimicrobial peptides: structures, properties and gene regulation. Protein and peptide letters. 2005;12(1):3-11

. Santibáñez-López CE, Possani LD. Overview of the Knottin scorpion toxin-like peptides in scorpion venoms: Insights on their classification and evolution. Toxicon. 2015;107(Part B):317-26. http://dx.doi.org/10.1016/j.toxicon.2015.06.029

. Nicholson GM. Insect-selective spider toxins targeting voltage-gated sodium channels. Toxicon. 2007;49(4):490-512.S0041-0101(06)00435-1 [pii] doi:10.1016/j.toxicon.2006.11.027

. Bosmans F, Tytgat J. Voltage-gated sodium channel modulation by scorpion α-toxins. Toxicon. 2007;49(2):142-58. doi:10.1016/j.toxicon.2006.09.023

. Nicholson GM. Spider venom peptides. In: Hastin A, editor. Handbook of Biologically Active Peptides. Louisiana: Elsevier; 2006. p.1640.

. Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron. 2000;26(1):13-25

. Rogers JC, Qu Y, Tanada TN, Scheuer T, Catterall WA. Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na+ channel alpha subunit. The Journal of biological chemistry. 1996;271(27):15950-62. doi:10.1074/jbc.271.27.15950

. Campos FV, Chanda B, Beirão PSL, Bezanilla F. β-Scorpion Toxin Modifies Gating Transitions in All Four Voltage Sensors of the Sodium Channel. The Journal of General Physiology. 2007;130(3):257-68. doi:10.1085/jgp.200609719

. Yuan C, Jin Q, Tang X, Hu W, Cao R, Yang S, et al. Proteomic and peptidomic characterization of the venom from the Chinese bird spider, Ornithoctonus huwena Wang. J Proteome Res. 2007;6(7):2792-801. doi:10.1021/pr0700192

. Diaz P, D'Suze G, Salazar V, Sevcik C, Shannon JD, Sherman NE, et al. Antibacterial activity of six novel peptides from Tityus discrepans scorpion venom. A fluorescent probe study of microbial membrane Na+ permeability changes. Toxicon. 2009;54(6):802-17. doi:10.1016/j.toxicon.2009.06.014

. Moerman L, Bosteels S, Noppe W, Willems J, Clynen E, Schoofs L, et al. Antibacterial and antifungal properties of alpha-helical, cationic peptides in the venom of scorpions from southern Africa. European journal of biochemistry / FEBS. 2002;269(19):4799-810

. Nomura K, Ferrat G, Nakajima T, Darbon H, Iwashita T, Corzo G. Induction of morphological changes in model lipid membranes and the mechanism of membrane disruption by a large scorpion-derived pore-forming peptide. Biophysical journal. 2005;89(6):4067-80. doi:10.1529/biophysj.105.070292

. Verdonck F, Bosteels S, Desmet J, Moerman L, Noppe W, Willems J, et al. A novel class of pore-forming peptides in the venom of parabuthus schlechteri Purcell (scorpions: buthidae). Cimbebasia. 2000;16:247-60

. Corzo G, Escoubas P, Villegas E, Barnham KJ, He W, Norton RS, et al. Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator. The Biochemical journal. 2001;359(Pt 1):35-45

. Dai L, Yasuda A, Naoki H, Corzo G, Andriantsiferana M, Nakajima T. IsCT, a novel cytotoxic linear peptide from scorpion Opisthacanthus madagascariensis. Biochemical and biophysical research communications. 2001;286(4):820-5. doi:10.1006/bbrc.2001.5472

. Conde R, Zamudio FZ, Rodriguez MH, Possani LD. Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. FEBS Lett. 2000;471(2-3):165-8

. Zeng XC, Wang SX, Zhu Y, Zhu SY, Li WX. Identification and functional characterization of novel scorpion venom peptides with no disulfide bridge from Buthus martensii Karsch. Peptides. 2004;25(2):143-50. doi:10.1016/j.peptides.2003.12.003

. Estrada-Gomez S, Cupitra NI, Arango WM, Munoz LJ. Intraspecific variation of centruroides edwardsii venom from two regions of Colombia. Toxins. 2014;6(7):2082-96. doi:10.3390/toxins6072082

. Estrada-Gomez S, Munoz LJ, Lanchero P, Latorre CS. Partial Characterization of Venom from the Colombian Spider Phoneutria Boliviensis (Aranae:Ctenidae). Toxins. 2015;7(8):2872-87. doi:10.3390/toxins7082872

. Estrada-Gomez S, Vargas Munoz LJ, Quintana Castillo JC. Extraction and partial characterization of venom from the Colombian spider Pamphobeteus aff. nigricolor (Aranae:Theraphosidae). Toxicon. 2013;76C:301-9. doi:10.1016/j.toxicon.2013.10.014


comments powered by Disqus

DOI: http://dx.doi.org/10.16925/cu.v2i2.1166

Métricas de artículo

Cargando métricas ...

Metrics powered by PLOS ALM


Contacto

Línea gratuita nacional

01 8000 420101

Dirección

Calle 48 # 28-00 Buenos Aires

Universidad Cooperativa de Colombia

Medellín, Colombia

Teléfono

57-4-4446065 Ext 4233

Revista en OJS implementada por Biteca Ltda.