Análisis de huellas de pisoteo y eólicas sobre huesos de un vertebrado moderno
PDF

Palabras clave

antropología forense
huellas medioambientales
historia tafonómica
intervalo post mortem

Cómo citar

1.
Nasti A. Análisis de huellas de pisoteo y eólicas sobre huesos de un vertebrado moderno. Colomb. forense [Internet]. 29 de julio de 2019 [citado 20 de octubre de 2019];6(1). Disponible en: https://revistas.ucc.edu.co/index.php/ml/article/view/2881

Resumen

Introducción: el análisis tafonómico de los restos óseos nos permitiría obtener información sobre algunos de los procesos posdepositacionales que los afectaron a corto, mediano y largo plazo. Este trabajo pretende exponer algunos de los resultados sobre la formación y distribución de huellas sobre restos óseos como parte de los procesos diagenéticos.
Métodos y materiales: para el análisis de las huellas se seleccionaron cinco muestras de huesos planos analizadas mediante la técnica de microscopía electrónica de barrido ambiental. Para obtener imágenes topográficas de las impresiones, se utilizó un perfilómetro óptico 3D.
Resultados y discusión: durante la presión de la superficie del periostio sobre el sedimento se producen ablaciones (soluciones de continuidad por colapso del periostio), que se asocian con frecuencia a la presencia
de huellas múltiples. Con respecto a las huellas producidas por erosión eólica, estas muestran dos tipos de morfología: una se presenta como pequeños agujeros con perímetros simétricos, generalmente coincidente
con morfología de los granos de sedimento. El otro tipo de huella muestra una forma más asimétrica de forma alongada.
Conclusión: los procesos tafonómicos pueden ser reconstruidos a partir de una secuencia diacrónica de la alteración que permita modelar una línea de tiempo que reconstruya los procesos que afectaron los restos orgánicos desde la muerte de un organismo. El modelo diagenético de Equus sp. mostraría que la erosión eólica permanecería a las pocas semanas de depositación y actuaría en espacios de tiempo más largos con lapsos de interrupción al momento del enterramiento de Equus por procesos de sedimentación.

PDF

Citas

1. Haglund WD, Sorg MH. Method and theory of forensic taphonomic research. En: Haglund WD,
Sorg MH, editores. Forensic taphonomy: the postmortem fate of human remains. Florida,
Estados Unidos: CRC Press; 1997. p. 13-26.
2. Ubelaker DH. Taphonomic Applications in Forensic Anthropology. En: W.D. Haglund and M.H.
Sorg, editores. Forensic taphonomy: the postmortem fate of human remains. Florida, Estados
Unidos: CRC Press; 1997, p. 77-90.
3. Cameron AC. Estimating the post-mortem interval of skeletal remains: a taphonomic
approach. [Disertación]. [Sidney]: The Australian National University; 2016.
4. Dirkmatt DC, Cabo LL, Ousley SD, Symes SA. New perspectives in forensic anthropology.
American Journal of Physical Anthropology. 2008; 137(S47):33-52. doi: 10.1002/ajpa.20948.
5. Cattaneo C. Forensic anthropology: developments of a classical discipline in the new
millennium. Forensic Sci Int. 2007 en. 17; 165(2-3):185-93. doi: 10.1016/j.forsciint.2006.05.018.
6. Andrews P, Cook J. Natural Modifications to Bones in a Temperate Setting. Man. 1985 dic.;
20(4):675–691. doi: 10.2307/2802756.
7. Lyman RL, Fox GL. A critical evaluation of bone weathering as an indication of bone assemblage
formation. J. Archaeol. Sci. 1989; 6(3): 293-317. doi: https://doi.org/10.1016/0305-4403(89)90007-1.
8. Fernandez Jalvo Y, Andrews P. Atlas of taphonomic identifications: 1001 images of fossil and
recent mammal bone modification. Springer: Vertebrate Paleobiology and Paleontology; 2017.
9. Bunn HT. A taphonomic perspective on the archaeology of human origins. Annu. Rev.
Anthropol. 1991; 20:443-67.
10. Dominguez-Rodrigo M, De Juana S, Galán AB, Rodríguez M. 2009. A new protocol to
differentiate trampling marks from butchery cut marks. J. Archaeol. Sci. 2009; 36(12):2643-54.
doi: https://doi.org/10.1016/j.jas.2009.07.017.
11. Lyman RL. Vertebrate Taphonomy. Cambridge Manuals in Archaeology. Cambridge: Cambridge
University Press; 1994.
12. Haglund WD, Reay DT, Swindler DR. Canid scavenging/disarticulation sequence of human
remains in the Pacific Northwest. J Forensic Sci. 1989 my.; 34(3):587-606.
13. Klippel WE, Synstelien JA. 2007. Rodents as taphonomic agents: bone gnawing by brown rats
and gray squirrels. J Forensic Sci. 2007 jul.; 52(4):765-73.
14. Shipman P. 1981. Life history of a fossil: an introduction to taphonomy and paleoecology.
Cambridge: Harvard University Press; 1981.
15. Pokines JT, Ames CJH. Weathering and Dispersal of a Cattle (Bos taurus) Carcass in the Desert
of Eastern. Jordan over a Six-Year Interval. Journal of Taphonomy. 2015; 13(1):17-31.
16. Lloveras Ll, Rissech L, Rosado N. Tafonomía forense. En Sanabria-Medina C, editor Patología
y antropología forense de la muerte: la investigación científico-judicial de la muerte y la
tortura, desde las fosas clandestinas, hasta la audiencia pública. Bogotá, Colombia: Forensic
Publisher; 2016. p. 453-523.
17. Bell LS, Skinner MF, Jones SJ. The speed of post-mortem change to the human skeleton and
its taphonomic significance. Forensic Sci Int. 1996 sep.; 82(2):129-40.
18. Brain CK. The Hunters or the Hunted? Chicago: The University of Chicago Press; 1981.
19. Fiorillo AR. An introduction to the identification of trample marks. En: Abstracts of the First
International Conference on Bone Modification. 1984 ag. 17-19; Carson City, Nevada: Center
for the Study of Early Man; 1984. 38 p.
20. Behrensmeyer AK, Gordon KD, Yanagi G. Trampling as a cause of bone surface damage and
pseudo-cutmarks. Nature 1986; 319(6056):768-71.
21. Olsen S, Shipman P. Surface modification on bone: trampling versus butchery. J. Archaeol.
Sci. 1988 sep.; 15(5):535-553.
22. SSchwarcz HP, Agur K, Jantz LM. 2010. A new method for determination of post mortem
interval: citrate content of bone. J Forensic Sci. 2010 nov.; 55(6):1516-22. doi: 10.1111/j.1556
-4029.2010.01511.x.
23. Capella A, Gibelli D, Muccino E, Scarpulla V, Cerutti E, Caruso V et al. The comparative
performance of PMI estimation in skeletal remains by three methods (C-14, luminol test
and OHI): analysis of 20 cases. Int J Legal Med. 2018 jul.; 132(4):1215-24. doi: 10.1007/s00414
-015-1152-z.
24. Gifford-González DP, Damrosch DB, Damrosch DR, Pryor J, Thunen RL. The third dimension
in site structure: an experiment in trampling and vertical dispersal. Am. Antiq. 1985 oct.;
50(4):803-18. doi: 10.2307/280169.
25. Nicholson RA. Bone survival: the effects of sedimentary abrasion and trampling on fresh and
cooked bone. International Journal of Osteoarchaeology 1992 mzo.; 2(1):79-90. doi: https://doi.
org/10.1002/oa.1390020110.
26. Cusimano AD. Trampling modification: an actualistic study in taphonomy. A university
[Disertación]. [California]: California State University; 2015. 99 p.
27. Pokines JT, Symes SA, editores. Manual of Forensic Taphonomy. Londres: CRC Press; 2014.
28. Nasti A. A taphonomic approach to marine abrasion on human bones. Forensic Res Criminol
Int J. 2017; 5(3):1-10. doi: 10.15406/frcij.2017.05.00154.
29. Nasti A. Temperatura acumulada diaria (ADD) y secuencia de desarticulación en la
reconstrucción del intervalo post-mortem (IPM). Contribución a la tafonomía forense.
Revista Argentina de Antropología Biológica. 21(1). Enero-Junio 2019 doi: 10.17139/
raab.2019.0021.01.07.
30. Ubelaker DH. Perimortem and postmortem modification of human bone. Lessons from
forensic anthropology. L Anthropologie. 1991; 29(3):171-4.
31. Fiorillo AR. An experimental study of trampling: implications for the fossil record. En:
Bonnichsen R, Sorg MH, editors. Bone modification. Orono, Estados Unidos: Center for the
Study of the First Americans; 1989. p. 61-71.
32. Fiorillo AR. Pattern and Process in Bone Modification. L Anthropologie. 1991 en.; 29(3):157-61.
33. Blasco R, Rosell A, Peris J, Cáceres I, Vergés JM. A new element of trampling: an experimental
application on the Level XII faunal record of Bolomor Cave (Valencia, Spain). J. Archaeol.
Sci. 2008 jun.; 35(6):1605-18. doi: 10.1016/j.jas.2007.11.007.
34. Nielsen AE. Trampling the archaeological record: an experimental study. Am. Antiq. 1991 jul.;
56(3):483-503. doi: 10.2307/280897.
35. Gaudzinski-Windheuser S, Lutz Kindler A, Rivka Rabinovich C, Naama Goren-Inbar D. Testing
heterogeneity in faunal assemblages from archaeological sites. Tumbling and trampling
experiments at the Early-Middle Pleistocene site of Gesher Benot Ya’aqov (Israel) J. Archaeol.
Sci. 2010 dic.; 37(12):3170-90. doi: 10.1016/j.jas.2010.07.018.
36. Marín-Monfort MD, Pesquero MD, Fernández-Jalvo Y. Compressive marks from gravel
substrate on vertebrate remains: a preliminary experimental study. Quaternary International.
2014 abr.; 330:118-125. doi: https://doi.org/10.1016/j.quaint.2013.10.028.
37. Littleton J. Taphonomic effects of erosion on deliberately buried bodies. J. Archaeol. Sci. 2000
en.; 27(1):5-18. doi: https://doi.org/10.1006/jasc.1999.0436.
38. Thompson CEL, Ball S, Thompson TJU, Gowland R. The abrasion of modern and archaeological
bones by mobile sediments: the importance of transport modes. J. Archaeol. Sci. 2011;
38(4):784-93. doi: 10.1016/j.jas.2010.11.001.
39. Andrews P. Experiments in Taphonomy. J. Archaeol. Sci. 1995 mzo.; 22(2):147-53. doi: https://
doi.org/10.1006/jasc.1995.0016.
40. Bertola GR. Morfo dinámica de playas del Sudeste de la Provincia de Buenos Aires (1983 a
2004). Lat. Am. j. sedimentol. basin anal. [internet]. 2006; 13(1):31-57. Disponible en: https://
www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851.
41. Del Río L, Esain M, Bocanegra A, Zamora A, Müller M, Menna, M. Caracterización y Estado
Ambiental de Mar de Las Pampas, Partido de Villa Gesell. Recursos, funciones, consistencias
y amenazas en asentamientos urbanos sobre costas medanosas. Provincia de Buenos Aires,
República Argentina: Centro de Estudios Mar del Plata. Universidad Tecnológica Nacional.
Editorial de la Universidad Tecnológica Nacional; 2010. 104 p.
42. Bertola GR, Cortizo L. Transporte de arena en médanos litorales activos y colgados del
sudeste de Buenos Aires. Rev. Asoc. Geol. Argent. 2005; 60(1):174-84.
43. Griffith CEL, Thompsona TJU, Thompson B, Gowland R. Experimental abrasion of water
submerged bone: The influence of bombardment by different sediment classes on
micro abrasion rate. J. Archaeol. Sci. 2016 dic; 10:15-29. doi: https://doi.org/10.1016/j.
jasrep.2016.09.001.
44. De Battista TJU, Thompson CEL, Thompson RL, Gowland A. A comparison of surface features
on submerged and non-submerged bone using scanning electron microscopy. Journal
of Forensic and Legal Medicine. 2013 ag.; 20(6):770-76. doi: https://doi.org/10.1016/j.
jflm.2013.03.037.
45. Bertola GR. Taphonomic and ecological information from bone weathering. Paleobiology
1978; 4(2):150-62. doi: https://doi.org/10.1017/S0094837300005820.
46. Gifford DP, Behrensmeyer AK. Observed formation and burial of a recent human
occupation site in Kenya. Quaternary Research. 1977 nov.; 8(3):245-66. doi: https://doi.
org/10.1016/0033-5894(77)90071-0.
47. Hedges REM. 2002. Bone diagenesis: an overview of processes. Archaeometry. 2002; 44(3): 319-28.
48. Andrews P, Whybrow P. Taphonomic observations on a camel skeleton in a desert
environment in Abu Dhabi. Palaeontologia Electrónica. 2005 en.; 8(1):1-17.
49. Beary MO, Lyman RL. The use of taphonomy in forensic anthropology: past trends and future
prospects. En: Dirkmaat D, editor. A companion to forensic anthropology. Nueva Jersey,
Estado Unidos: Blackwell Publishing; 2012. p. 499-527.
50. Gilbert WH, Richards D. Digital imaging of bone and toothmodification. The Anatomical
Record. 2000 dic.; 261(6):237‐46. doi: https://doi.org/10.1002/1097-0185(20001215)261:6<237
::AID-AR1006>3.0.CO;2-N
51. Borrini M. et al. Contextual taphonomy: Superficial bone alterations as contextual indicators.
Journal of Biological Research-Bollettino della Società Italiana di Biologia Experimentale.
2012 nov.; 85(1):217-19. doi: 10.4081/jbr.2012.4115.

Descargas

La descarga de datos todavía no está disponible.

Métricas del artículo

Cargando métricas ...