Composting of solid waste from the coffee milling process using trench composting and a bioreactor with the help of efficient microorganisms in the Libre University, Socorro headquarters

Main Article Content

Cristhian David Patiño Casallas
Daniel Camilo Blanco Ayala
PhD Maria Teresita Ortiz Villota

Article Details

Section
Research Articles

Abstract

Introduction: The present article is the product of the research “¿Use and management of organic waste from the Majavita farm, Universidad Libre, Socorro Headquarters (Santander)?" carried out during 2017 and 2018 in Socorro, Santander.


Problem: Currently the Libre University, offers to solid waste coming from the benefit of the coffee a management in a trench compost system to prevent contamination that is caused for it poor disposal; this does not imply the production of an optimum product that shall have the standards of quality of a suitable compost.


Objective: Propose an alternative to operate the compost process under suitable conditions of the process variables; it is expected that would allow waste to compost more efficiently and in less time.


Methodology: This article compares the effectiveness of composting production in a traditional trench system against a semi-closed bioreactor system, and the cost-benefit of implement this proposed system.


Results: To guarantee the result by showing the improvement of the process; is necessary to follow and compare the behavior of the process variables in each kind of composters, such as temperature, moisture and ph.


Conclusion: This project seeks to propose a viable alternative for the treatment of the solid waste of the productive process of the coffee.


Originality: This research, seeks to improve the process of compost in the Majavita Farm.


Limitations: The time used to the farm to compost the solid waste using a traditional system.

[1] M. D. Vaverková, D. Adamcová, J. Winkler, E. Koda, L. Petrželová and A. Maxianová, “Alternative method of composting on a reclaimed municipal waste landfill in accordance with the circular economy: Benefits and risks,” Science of The Total Environment, vol. 723, 2020. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2020.137971

[2] D. Labbe, A. Ferrage, A. Rytz, J. Pace and N. Martin, “Pleasantness, emotions and perceptions induced by coffee beverage experience depend on the consumption motivation (hedonic or utilitarian),” Food Quality and Preference, vol. 44, pp. 56-61, 2015. [Online]. Available: https://doi.org/10.1016/j.foodqual.2015.03.017

[3] K. J. Cloete, Ž. Šmit, R. Minnis-Ndimba, P. Vavpetič, A. du Plessis, S.G. le Roux and P. Pelicon, “Physico-elemental analysis of roasted organic coffee beans from Ethiopia, Colombia, Honduras, and Mexico using X-ray micro-computed tomography and external beam particle induced X-ray emission,” Food Chemistry: X, vol. 2, 2019. [Online]. Available: https://doi.org/10.1016/j.fochx.2019.100032

[4] A. M. Loboguerrero, F. Boshell, G. León, D. Martinez Baron, D. Giraldo, L. Recaman Mejía, E. Díaz and J. Cock, “Bridging the gap between climate science and farmers in Colombia,” Climate Risk Management, vol. 22, pp. 67-81, 2018. [Online]. Available: https://doi.org/10.1016/j.crm.2018.08.001

[5] P. Esquivel and V.M. Jiménez, “Functional properties of coffee and coffee by-products,” Food research international, vol. 46, no. 2, pp. 488–495, 2012. [Online]. Available: https://doi.org/10.1016/j.foodres.2011.05.028

[6] Y. Kassahun Kebede, T. Kebede, F. Assefa and A. Amsalu, “Environmental impact of coffee processing effluent on the ecological integrity of rivers found in Gomma woreda of Jimma zone, Ethiopia,” Ecohydrology & Hydrobiology, vol. 10, no. 2–4, pp 259-269, 2010. [Online]. Available: https://doi.org/10.2478/v10104-011-0019-2

[7] I. I. Sánchez-Medina, F. Medina-Rojas, and J. M. Cabrera-Medina, “Design of software to calculate the carbon and water footprint during coffee production,” Revista Ingeniería Solidaria, vol. 14, no. 24, pp. 12, 2018. [Online]. Available: doi: https://doi.org/10.16925/in.v14i24.2159

[8] J. S. da Silveira, N. Durand, S. Lacour, M. P. Belleville, A. Pérez, G. Loiseau, and M. Dornier, “Solid-state fermentation as a sustainable method for coffee pulp treatment and production of an extract rich in chlorogenic acids,” Food and Bioproducts Processing, vol. 115, pp. 175-184, 2019. [Online]. Available: https://doi.org/10.1016/j.fbp.2019.04.001

[9] D. Orrego, A. D. Zapata Zapata and D. Kim, “Ethanol production from coffee mucilage fermentation by S. cerevisiae immobilized in calcium-alginate beads,” Bioresource Technology Reports, vol. 3, pp. 200-204, 2018. [Online]. Available: https://doi.org/10.1016/j.biteb.2018.08.006

[10] E. D. Díaz Díaz and S. R. Quinto Solis, “Production of Bioethanol from Bore (Alocasia macrorrhiza),” Revista Ingeniería Solidaria, vol. 15, no. 3, 2019. [Online]. Available: doi: https://doi.org/10.16925/2357-6014.2019.03.03

[11] L. A. Salazar Salas, R. Y. Quiroga Mateus, L. F. Castillo Rojas and H. A. Vega Serrano, “Diagnóstico del tratamiento de aguas residuales mediante los sistemas Cenicafé y Majavita del beneficio ecológico del café con módulo Becolsub en la Hacienda Majavita. [Diagnosis of wastewater treatment using the Cenicafé and Majavita systems for the ecological benefit of coffee with the Becolsub module at Hacienda Majavita],” Innovando en la U, no 5, pp. 33-48, 2013. [Online]. Available: https://revistas.unilibre.edu.co/index.php/innovando/issue/view/325

[12] P. S. Murthy and M. Madhava Naidhu, “Sustainable management of coffee industry by-products and value addition; a review,” Resources, Conservation and Recycling, vol. 66 (2012), pp. 45-58, 2012. [Online]. Available: https://doi.org/10.1016/j.resconrec.2012.06.005

[13] S. X. Díaz Chaparro, E. R. Vesga Buenahora and H. A. Vega Serrano, “Identificación del manejo de subproductos del beneficio del café en las fincas localizadas en la parte alta de la microcuenca La Sancotea, Vereda Alto de Reinas, Socorro-Santander [Identification of the management of by-products of coffee processing in farms located in the upper part of the La Sancotea micro-basin, Vereda Alto de Reinas, Socorro- Santander],” El Centauro, vol. 5, no. 8, pp. 19-23, 2013. [Online]. Available: https://revistas.unilibre.edu.co/index.php/centauro/article/view/2359

[14] J. J. Giraldo Quintero, C. D. Niño Méndez and Z. Vianchá Sánchez, “Analysis of Good Practices in the Coffee Milling Process: Study Experience in the Municipality of Viotá (Cundinamarca, Colombia),” Ingeniería Solidaria, vol. 13, no. 22, pp. 121-135, 2017. [Online]. Available: https://doi.org/10.16925/in.v13i22.1839

[15] D. Betancourt, C. Rodríguez and O. L. Benavides, “Producción de un mejorador de suelos a partir de la transformación biológica de pulpa de café (coffea arabica), cepa de plátano (musa paradisiaca) y estiércol de cuy (Cavia porcellus) [Production of a soil improver from biological transformation of cofee (coffea arabica) pulp, banana (musa paradisiaca) strain and guinea pig dung (cavia porcellus)],” Vitae, vol. 23, no. 1 (1), pp. S522-S525, 2016. [Online]. Available: https://revistas.udea.edu.co/index.php/vitae/article/view/26176/ 20779432

[16] G. Sanchez, S. Galan, G. Mercado and E. J. Olguin, “Accelerated coffee pulp composting,” Biodegradation, vol. 10, no.1, pp. 35-41, 1999. [Online]. Available: https://link.springer.com/journal/10532/10/1

[17] M. Rastogi, M. Nandal and B. Khosla, “Microbes as vital additives for solid waste composting,” Heliyon, vol. 6, no. 2, 2020. [Online]. Available: https://doi.org/10.1016/j.heliyon.2020.e03343

[18] M. Waqas, A. S. Nizami, A. S. Aburiazaiza, M. A. Barakat, I. M. I. Ismail and M. I. Rashid, “Optimization of food waste compost with the use of biochar,” Journal of Environmental Management, vol. 216, pp. 70-81, 2018. [Online]. Available: https://doi.org/10.1016/j.jenvman.2017.06.015

[19] J. I. Torres Usechi, “Diseño del prototipo de un biorreactor de lecho fijo y tambor giratorio alimentado por energía fotovoltaica, para la producción de compost, a partir de azolla filiculoides y typHa latifolia, de la laguna chocolate de une Cundinamarca [Design of the prototype of a fixed-bed and rotating drum bioreactor fed by photovoltaic energy, for the production of compost, from azolla filiculoides and typHa latifolia, from the chocolate lagoon of Une Cundinamarca],” M.S. Thesis, Engineering Faculty, Universidad Libre, Bogotá, Colombia, 2014. [Online]. Available: https://repository.unilibre.edu.co/handle/10901/8456

[20] C. J. Moreno & H.R. Moral. Compostaje. Madrid: Mundi-prensa, 2007, pp 93-111.

[21] G. Mata, D. Salmones and R. Pérez Merlo, “Hydrolytic enzyme activities in shiitake mushroom (Lentinula edodes) strains cultivated on coffee pulp,” Revista Argentina de Microbiología, vol. 48, no. 3, pp. 191-195, 2016. [Online]. Available: https://doi.org/10.1016/j.ram.2016.05.008

[22] A. Guardia, C. Massiani, J.L. Martel and A. Tremier, E. Paul, “A respirometric method for characterising the organic composition and biodegradation kinetics and the temperature influence on the biodegradation kinetics, for a mixture of sludge and bulking agent to be co-composted,” Bioresource Technology, vol. 96, no. 2, pp. 169-180, 2005. [Online]. Available: https://doi.org/10.1016/j.biortech.2004.05.005

[23] C. N. Aguilar, L. Londoño Hernández, H. A. Ruiz, T. C. Ramírez, J. A. Ascacio and R. Rodríguez Herrera, “Fungal detoxification of coffee pulp by solid-state fermentation,” Biocatalysis and Agricultural Biotechnology, vol. 23, pp. 101-467, January 2020. [Online]. Available: https://doi.org/10.1016/j.bcab.2019.101467

[24] Z. Liu, X. Wang, F. Wang, Z. Bai, D. Chadwick, T. Misselbrook and L. Ma, “The progress of composting technologies from static heap to intelligent reactor: Benefits and limitations,” Journal of Cleaner Production. [Online]. Available: https://doi.org/10.1016/j.jclepro.2020.122328

[25] R. A. Arias Ortiz and J. D. Meneses Cruz, “Caracterización físico-química de residuos agroindustriales (cascarilla de arroz y cascarilla de café), como materia prima potencial para la obtención de bioetanol [Physical-chemical characterization of agro-industrial waste (rice husk and coffee husk), as a potential raw material for obtaining bioetanol],” Thesis, Faculty of Sciences and Engineering, Department of Chemistry, Universidad Nacional Autónoma de Nicaragua, Managua, Nicaragua, December 2016. [Online]. Available: https://repositorio.unan.edu.ni/3793/

[26] W. Alonso, D. Filippetto, F. Fonseca, C. Luengo, J. Mesa and J.D. Rocha, “Biomass briquetting and its perspectives in Brazil,” Biomass and bioenergy, vol. 35, no. 1, pp. 236-242, 2011. [Online]. Available: https://doi.org/10.1016/j.biombioe.2010.08.011

[27] F. Shemekite, B. M. Gómez, I. H. Franke Whittle, B. Praehauser, H. Insam and F. Assefa, “Coffee husk composting: An investigation of the process using molecular and nonmolecular tools,” Waste Management, vol. 34, no. 3, pp. 642–652, 2014. [Online]. Available: https://doi.org/10.1016/j.wasman.2013.11.010

[28] A. Arias Hoyos, “Microorganismos eficientes y su beneficio para la agricultura y el medio ambiente [Efficient microorganisms and their benefit for agriculture and the environment],” Journal De Ciencia e Ingeniería, vol. 2, no. 1, pp. 42–45, Popayán, Colombia, 2010. [Online]. Available: https://jci.uniautonoma.edu.co/jci-2.html

[29] A. I. Quiroz, Y. Granda, F. Pierre and M. B. Rosell, “Evaluación química y biológica de compost de pulpa de café en Caspito municipio Andrés Eloy Blanco, estado Lara, Venezuela [Chemical and biological evaluation of coffee pulp compost in Caspito Andrés Eloy Blanco municipality Lara state, Venezuela],” Bioagro, vol. 21, no. 2, pp. 105-110, 2009. [Online]. Available: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-33612009000200004

[30] J. Montilla, J. Arcila, M. Aristizabal, E. Montoya, G. Puerta, C. Oliveros and G. Cadena, “Propiedades físicas y factores de conversión del café en el proceso del beneficio [Physical properties and conversion factors of coffee in the process of the benefit],” Avances Técnicos, no. 370, 2008. [Online]. Available: http://biblioteca.cenicafe.org/bitstream/10778/358/1/avt0370.pdf

[31] N. Fierro Cabrales, A. Contreras Oliva, O González Ríos, E.S. Rosas Mendoza and V. Morales Ramos, “Caracterización química y nutrimental de la pulpa de café [Chemical and nutritional characterization of coffee pulp],” Agroproductividad, vol. 11, no. 4, pp 9-13, 2018. [Online]. Available: https://revista-agroproductividad.org/index.php/agroproductividad/article/view/ 261

[32] G. Blandón Castaño, M. T. Dávila Arias and N. Rodríguez Valencia, “Caracterización microbiológica y fisicoquímica de la pulpa de café sola y con mucilago, en proceso de Lombricompostaje [Microbiological and physicochemical characterization of the coffee pulp alone and with mucilage, in the process of vermicomposting],” Cenicafe, vol. 50, no. 1, pp 5-23, 1999. [Online]. Available: https://www.cenicafe.org/es/publications/arc050(01)005-023.pdf

[33] J. R. Sanz Uribe, C. E Oliveros Tascón, C. A. Ramírez Gómez, U. López Posada and J. Velásquez Henao, “Controle los flujos de café y agua en el módulo BECOLSUB [Control coffee and water flows in the BELCOSUB module],” Avances Técnicos, no. 405, 2011. [Online]. Available: https://www.cenicafe.org/es/publications/avt0405.pdf

[34] E. Serrano Rodríguez and E. Padilla González, “Analysis of the changes in the mechanical properties of subrasant materials by the addition of recycled polymeric materials,” Revista Ingeniería Solidaria, vol. 25, n.° 1, 2019. DOI: https://doi.org/10.16925/2357-6014.2019.01.01

[35] A. de Guardia, C. Petiot, J.C. Benoist and C. Druilhe, “Characterization and modelling of the heat transfers in a pilot-scale reactor during composting under forced aeration,” Waste Management, vol. 32, no. 6, pp 1091-1105, 2012. [Online]. Available: https://doi.org/10.1016/j.wasman.2011.12.028

[36] Y. Jiang, J. Liu, Z. Huang, P. Li, M. Ju, S. Zhan and P. Wang, “Air bag bioreactor to improve biowaste composting and application,” Journal of Cleaner Production, vol. 237. [Online]. Available: https://doi.org/10.1016/j.jclepro.2019.117797