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Abstract 
This article presents an implementation and comparative analysis of 8-bit Wallace Tree Multiplier (WTM), Parallel 

Booth Multiplier (PBM), and Baugh-Wooley Multiplier (BWM) algorithms.

Introduction: this article results from research conducted for a Master’s degree in Engineering at the Pedagogical 

and Technological University of Colombia (UPTC) between 2022 and 2024. It analyzes and compares the performan-

ce of three multiplication algorithms (WTM, PBM, and BWM), focusing on variables such as operation time and the 

number of logical elements used.

Problem: computing has advanced rapidly, enabling multiple operations on a single chip. This has increased the 

demand for components that execute tasks quickly while occupying minimal space. Multipliers are crucial in appli-

cations such as filters, DSP circuits, and fast Fourier transforms.

Objective: to analyze and compare the performance of three multiplication algorithms—WTM, PBM, and BWM—tai-

lored for 8-bit systems.

Methodology: the research methodology was designed to ensure robustness and reliability. It began with formulating 

objectives and identifying key variables. Articles were selected based on their contributions to understanding multi-

plication algorithms and programming languages. The research included designing and comparing 8-bit multiplier 

algorithms (WTM, PBM, and BWM).

Results: an analysis of the results identified the variables that contributed to significant performance improvements 

for each algorithm.

Conclusions: the project successfully improved the efficiency of the algorithms by utilizing various register shifts and 

multipliers based on the operational case that benefited them the most. It achieved improvements in both efficiency 

and operation time concerning the use of logical elements.

Originality: this research formulates strategies for applying and comparing multiplication algorithms, differentiating 

data processing based on specific data characteristics.

Limitations: 

• The lack of testing systems for the implementations.

• The study focused on comparing three multiplication algorithms, limiting generalizability.

• Performance metrics.

Keywords: Multipliers, VHDL, ModelSim, FPGA, Full Adders, Half Adders.

Resumen
Este artículo presenta una implementación y análisis comparativo de los algoritmos de multiplicación Wallace Tree 

Multiplier-(WTM), Parallel Boot Multiplier-(PBM) y Baugh-Wooley Multiplier-(BWM) de 8 bits.

Introducción: este artículo es el resultado de una investigación realizada para la Maestría en Ingeniería en la 

Universidad Pedagógica y Tecnológica de Colombia (UPTC) entre 2022 y 2024, los resultados se enfocan en varia-

bles como el tiempo de operación y el número de elementos lógicos utilizados.

Problema: la informática ha avanzado rápidamente, realizando múltiples operaciones en un solo chip. Esto ha incre-

mentado la demanda de componentes que ejecuten tareas rápidamente y ocupen un espacio mínimo. Los multipli-

cadores son cruciales en aplicaciones como filtros, circuitos DSP y transformadas rápidas de Fourier.

Objetivo: analizar y comparar el rendimiento de tres algoritmos de multiplicación—Wallace Tree, Booth Parallel y 

Baugh-Wooley—adaptados para sistemas de 8 bits.

Metodología: la metodología comienza con la formulación de objetivos e identificación de variables clave como el 

tiempo de operación, el número de elementos lógicos. Se realizó una revisión bibliográfica exhaustiva y se selec-

cionaron artículos basados en su relevancia para el análisis del rendimiento de algoritmos de multiplicación y su 

aplicabilidad.

Resultados: un análisis de los resultados identificó las variables que lograron mejoras significativas en el rendimien-
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to de cada algoritmo.

Conclusiones: el proyecto logra mejorar la eficiencia de los algoritmos utilizando varios desplazamientos de regis-

tros y multiplicadores basados en el caso operativo que más los beneficie, el proyecto logró mejorar la eficiencia y 

tiempo de operación, En cuanto al uso de elementos lógicos.

Originalidad: esta investigación formula estrategias para aplicar y comparar algoritmos de multiplicación con dife-

renciación en el procesamiento de datos basándose en características específicas de los datos analizados.

Límites:

• La falta de sistemas de prueba para las implementaciones.

• El estudio se centró en la comparación de tres algoritmos de multiplicación en sistemas de 8 bits en VHDL, 

limitando su generalización.

• Las métricas de rendimiento pueden no captar todas las dimensiones del rendimiento de los algoritmos y len-

guajes de programación.

Palabras clave: Multiplicadores,VHDL,MODELSIM,FPGA,Sumadores completos,Sumadores parciales.

Resumo
Este artigo apresenta uma implementação e análise comparativa dos algoritmos de multiplicação Wallace Tree 

Multiplier-(WTM), Parallel Boot Multiplier-(PBM) e Baugh-Wooley Multiplier-(BWM) de 8 bits.

Introdução: este artigo é resultado de uma pesquisa realizada para o Mestrado em Engenharia da Universidade 

Pedagógica e Tecnológica da Colômbia (UPTC) entre 2022 e 2024. Os resultados se concentram em variáveis   como 

tempo de operação e número de elementos lógicos utilizados.

Problema: a computação avançou rapidamente, realizando diversas operações em um único chip. Isso aumentou a 

demanda por componentes que executem tarefas rapidamente e ocupem o mínimo de espaço. Multiplicadores são 

cruciais em aplicações como filtros, circuitos DSP e transformadas rápidas de Fourier.

Mirar: analise e compare o desempenho de três algoritmos de multiplicação — Wallace Tree, Booth Parallel e Baugh-

Wooley — adaptados para sistemas de 8 bits.

Metodología: a metodologia começa com a formulação de objetivos e a identificação de variáveis-chave, como o 

tempo de operação e o número de elementos lógicos. Foi realizada uma revisão abrangente da literatura e os artigos 

foram selecionados com base em sua relevância para a análise do desempenho do algoritmo de multiplicação e sua 

aplicabilidade.

Resultados: uma análise dos resultados identificou as variáveis   que alcançaram melhorias significativas no desem-

penho de cada algoritmo.

Conclusões: o projeto alcança eficiência de algoritmo aprimorada usando vários deslocamentos de registro e multi-

plicadores com base no caso operacional que mais os beneficia, o projeto alcançou eficiência e tempo de operação 

aprimorados, em termos de uso de elementos lógicos.

Originalidade: esta pesquisa formula estratégias para aplicar e comparar algoritmos de multiplicação e diferen-

ciação no processamento de dados com base em características específicas dos dados que estão sendo analisa-

dos.

Limites: 

• Falta de sistemas de testes para implementações.

• O estudo se concentrou na comparação de três algoritmos de multiplicação em sistemas de 8 bits em VHDL, 

limitando sua generalização.

• As métricas de desempenho podem não capturar todas as dimensões do desempenho de algoritmos e lingua-

gens de programação.

Palavras-chave: Multiplicadores, VHDL, MODELSIM, FPGA, Somadores completos, Somadores parciais.
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1. INTRODUCTION
In the past few decades, there has been rapid progress in the field of computing, 
enabling the execution of multiple operations on a single chip. Among these opera-
tions, multiplication plays a pivotal role in arithmetic computations. The demand for 
high-speed multipliers has remained consistently high over time [1-2]. Among various 
components, multipliers hold significant importance in applications such as filters, 
DSP circuits, machine learning, and fast Fourier transforms [3-7].

The advancement of circuits in the current digital era is constrained by the 
exploration of alternative nanodevices, moving beyond sole reliance on CMOS technol-
ogy [8-10]. Traditional multipliers consume substantial energy and exhibit limited ex-
ecution speed, creating a growing necessity for high-performance multipliers [11-12].

There are several types of multipliers, each designed to perform multiplication 
operations, although they differ in their method of obtaining partial products [13]. This 
article explores some of these multiplier types, as they vary in their approach and 
functionality, employing cascaded carry adders composed of half-adder and full-ad-
der operators.

These multipliers are implemented through various programming routines. The 
Wallace algorithm was developed by computer scientist Chris Wallace in 1964. The 
Baugh-Wooley multiplier algorithm was created between 1973 and 1979, while the 
Booth multiplier algorithm was invented by Andrew Donald Booth in 1950 [14]. These 
methods remain among the most efficient for performing intensive multiplication 
operations with low hardware costs, even today [15-16]. They play a crucial role in 
applications such as trigonometric transformations [17-18], Fast Fourier Transform 
(FFT) [3,17], neural network implementations [17,19], and any process that requires 
multiplication operations.

The development was carried out on a Field-Programmable Gate Array (FPGA) 
platform. FPGAs are widely used due to their high efficiency in performing mathe-
matical operations with low energy consumption [17]. These characteristics have 
captured the interest of the scientific community, which seeks to harness the inherent 
parallelism of these algorithms for efficient implementation across various software 
and hardware platforms [17,19].

The design of multipliers typically involves three steps:

Generation of Partial Products: This involves generating the intermediate prod-
ucts resulting from multiplying individual bits of the two input numbers.

Compression Tree Design: The partial products generated in the previous 
step need to be added together in a structured manner. This requires designing a 
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compression tree that efficiently combines these partial products to obtain a reduced 
set of terms.

Final Adder Design: The reduced set of terms from the compression tree is then 
summed using a final adder to produce the final product of the multiplication.

For FPGA implementations, these steps present distinct design challenges, as 
there are numerous potential FPGA assignments for each stage. Therefore, each step 
requires its own combinatorial optimization [20].

Advanced digital design is achieved using Hardware Description Language 
(HDL), specifically VHDL (VHSIC Hardware Description Language) [18]. This process 
is utilized to create complex digital systems such as processors, embedded systems, 
communication systems, and other highly sophisticated digital architectures. High-
speed multiplier designs are essential in digital arithmetic, each with its own advantag-
es and disadvantages. The selection of a specific algorithm depends on the project’s 
requirements [3,14,21].

This work presents a VHDL implementation of three 8-bit multiplier algorithms: 
Wallace Tree Multiplier (WTM), Parallel Booth Multiplier (PBM), and Baugh-Wooley 
Multiplier (BWM) on an FPGA platform. This implementation allows for the compar-
ison of operation modes and performance. The proposed architecture provides an 
open-source VHDL implementation that meets the requirements of most applications 
utilizing this module.

The remainder of the document is structured as follows: The Experimental 
Development section revisits the underlying concepts of the algorithms and the 
proposed architecture for their implementation. The Results section outlines the pro-
cedures performed to verify the developed architecture and presents the obtained 
outcomes. Finally, the Conclusions section summarizes the work.

The Wallace Multiplier (WTM):
The Wallace multiplier is a binary multiplication method that utilizes a tree-like struc-
ture of addition and shifting to efficiently perform multiplication. This approach is 
widely used in high-speed and low-power digital circuit implementations. In January 
2022, a scientific study was published comparing two Wallace multiplier architec-
tures implemented using transistors [22].
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Parallel Booth Multiplier (PBM):
The Booth algorithm, used in modular arithmetic, enables more efficient multiplica-
tion of large numbers. This algorithm is well-suited for large-number multiplication in 
distributed or parallel systems. In Booth multiplication, partial product generation is 
optimized using a specific encoding technique, which can be illustrated with a flow-
chart. The multiplicand (BR) bits are grouped from left to right, and corresponding 
operations on the multiplier (QR) are performed to generate partial products. These 
partial products are then summed using a Carry-Save Adder (CSA) [23-25].

An approximate radix-8 Booth multiplier further reduces the number of addition 
steps in the multiplication process [26]. The design of the Parallel Booth Multiplier 
(PBM) employs the Barrett reduction technique to minimize intermediate products 
during multiplication. This reduces the number of operations needed to compute the 
final result. Additionally, the PBM algorithm can be easily parallelized, making it suit-
able for distributed systems and parallel processing environments.

The Baugh-Wooley Multiplier (BWM):
The BWM algorithm is based on the partial sum technique, which reduces the number 
of operations required to multiply two binary numbers. Instead of directly multiplying 
the two numbers, they are decomposed into smaller parts, which are then multiplied 
separately [4]. The partial results are subsequently summed to obtain the final product.

Reversible logic designs have been proposed for the Baugh-Wooley multiplier, 
but these designs have led to increased power consumption and substantial energy 
dissipation due to information loss in conventional approaches [27-28].

Multiplication and division are essential operations in communication systems. 
Traditionally, multipliers occupy larger areas, consume more power, and introduce 
significant latency [29]. These characteristics depend on the specific multiplication 
techniques employed. Therefore, implementing an efficient multiplier that minimizes 
both latency and power consumption is crucial.

The Baugh-Wooley multiplier has been used as a type of signed multiplier that 
incorporates both exact and approximate compressors to reduce the number of par-
tial products generated. Exact compressors are used to compute the most significant 
bits, while approximate compressors generate the least significant bits. This approach 
reduces hardware requirements while maintaining high accuracy [30].
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2. MATERIALS AND METHODS
Figure 1 illustrates the input and output components of the Wallace multiplier, which 
has two 8-bit standard logic vector inputs and a 16-bit standard logic vector output.

Wallace Multiplier

Figure 1. Code header and entity ports. 
Source: Own work.

In the realm of arithmetic circuits, the Wallace tree emerges as a pivotal struc-
ture, characterized by its tree-like configuration of addition and shifting operations. Its 
primary function is to aggregate the partial products generated from the multiplication 
of individual bits within operands [30].

Constructed using a series of addition and shifting blocks, the Wallace tree 
enhances efficiency by streamlining the process of combining partial products. This 
efficiency is achieved by strategically reducing the number of addition operations 
required and minimizing overall shifting overhead [31]. As a result, the Wallace tree 
serves as a cornerstone in arithmetic circuit design, offering optimized solutions for 
complex multiplication tasks.

Figure 2 illustrates the structure of partial products and their distinct groupings, 
highlighting the combinations processed through full adders or half adders. The anal-
ysis reveals that implementing an 8-bit Wallace tree requires five stages. Additionally, 
it is noted that an OR operation is applied to the bits C68 and R68.
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Figure 2. Aggregation of partial products to form the Wallace tree, five (5) stages. 
Source: Own work.

The algorithm’s design rationale involves individually implementing each com-
ponent to accommodate the irregular access pattern inherent in the matrix of results 
and partial products. This approach is necessary due to the algorithm’s unique require-
ments, which deviate from conventional architectures. Full adders and half adders are 
interconnected according to the stages outlined in Figure 2, ensuring proper alignment 
with the algorithm’s processing flow. This meticulous component integration strategy 
optimizes execution efficiency and enables seamless handling of complex multiplica-
tion tasks.

Figure 1 illustrates that the Wallace multiplier has three ports: two 8-bit inputs 
(A and B) and a 16-bit output (X).

Figure 3 depicts the input and output components of the Parallel Booth Multiplier, 
which consists of two 8-bit standard logic vector inputs and one 16-bit standard logic 
vector output.
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3) Parallel Booth Multiplier (PBM):

Figure 3. Block diagram and corresponding input-output ports for the Parallel Booth 
multiplier. 

Source: Own work.

The design of the proposed multiplier is carried out through a sequence of 
steps: in the first stage, partial products are generated; in the second stage, recoded 
partial products are added until only two rows remain; and in the final stage, the cor-
responding rows are summed to obtain the final result. In this article, multiplication 
is implemented using the Booth Encoding technique, which relies mainly on repeated 
applications of multiplication and addition. The speed of these operations determines 
the execution speed and realization of the entire calculation. Since the multiplier typi-
cally requires the longest delay among the basic operational blocks in a digital system, 
the critical path is generally determined by the multiplier.

The VHDL encoding of the Parallel Booth Multiplier was performed using var-
ious components, including an encoder, as shown in Figure 4, which determines the 
appropriate step to be taken with the data frame. A full adder is used for bit-by-bit ad-
ditions, and a multiplexer selection unit is also included. In Figure 5, the block diagram 
and ports of the Parallel Booth Multiplier are shown. Similar to the previous multipliers, 
it has two 8-bit inputs and one 16-bit output.
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Figure 4. Controlled Add-Subtract-Shift Cell (CASS) 
Source: Own work.

𝑃 𝑜𝑢𝑡 = 𝑃 $𝑛 ⊕ 𝑥. 𝐻 ⊕ 𝐶$𝑛.  𝐻 
𝐶 𝑜𝑢𝑡 = 𝑃 $𝑛 ⊕ 𝐷. 𝑥 + 𝐶$𝑛 + 𝑥. 𝐶$𝑛

H and D are control signals that denote the operation type to be executed:

If H=0, a non-arithmetic operation is indicated, resulting in the preservation of 
the previous partial product, where Pout equals Pin.

If H=1, an arithmetic operation is specified, necessitating the generation of a 
new Pout. The nature of the arithmetic operation is determined by D:

If D=0, the multiplicand bit, represented as x, is combined with Pin, using Cin as 
the carry- in sourced from the neighboring cell on the left.

If D=1, the multiplicand bit x is subtracted from Pin, employing Cin as the bor-
row-in and Cout as the borrow-out.

The signals H and D derive from the yi and yi-1 bits, following the principles of 
the Booth algorithm.
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Figure 5. Multiplier Configuration Matrix 
Source: Own work.

Baught-Wooley Multiplier (BWM):
In Figure 6, the input and output components of the Baugh Wooley Multiplier with 
2 inputs of 8-bit standard logic vector type and one output of 16-bit standard logic 
vector type were shown.

Figure 6. Block diagram and corresponding input-output ports 
for the Baugh-Wooley multiplier. 

Source: Own work.
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The architectural blueprint of the Baugh-Wooley multiplier, as outlined in Figure 
7, serves as the foundational framework for its structure. In this document, the concep-
tualization illustrated in Figure 8 for 4-bit systems was extrapolated to accommodate 
8-bit configurations. However, upon examining the source code, it becomes clear that 
the initial phase involves creating a matrix primarily composed of AND gates, followed 
by the use of a generic matrix of full adders. This implementation highlights a strategic 
departure from the depicted schematic, underscoring the flexibility and adaptability of 
the Baugh-Wooley multiplier design methodology [32-33].

Figure 7. content of the cells that make up the 8-bit Baugh-Wooley multiplier consists. 
Source: Own work.

In the Baugh-Wooley multiplier architecture, as depicted in Figure 8, the funda-
mental concept involves constructing a matrix of full adders. Within this matrix, one 
input is consistently set to ‘0’ or the sum from the previous stage, while the other input 
receives the carry from the immediately preceding full adder. Notably, for the elements 
positioned at the edges, a NAND gate is used instead of the typical AND gate, as 
shown in Figure 7. Additionally, for the element located at position (n-1) x (n-1) — the 
bottom-left corner of the matrix — an AND gate is employed. It is important to note that 
this conceptual framework can be extended to accommodate multipliers with higher 
bit configurations, facilitating versatile multiplication operations.
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Figure 8. Block diagram of the 8-bit Baugh-Wooley multiplier. 
Source: Own work.

In synthesizing the final row of full adders, as illustrated in Figure 8, an 8-bit 
Ripple Carry Adder (RCA) was integrated. This choice was made due to its efficient 
carry propagation across all bits, ensuring seamless addition of partial products 
generated during multiplication. Essential code for both the 8-bit RCA and full adder 
components was implemented to enable the multiplier’s functionality. The output X 
of the 8-bit multiplier was then meticulously mapped, establishing the crucial corre-
spondence between inputs and outputs. This careful design process highlights the 
robustness and efficiency of the 8-bit multiplier implementation in VHDL.

3. RESULTS
The Wallace Tree Multiplier (WTM) is an algorithm that utilizes the technique of paral-
lel reduction to minimize the number of necessary additions and multiplications. It is 
particularly suited for multiplying large numbers due to its high efficiency in terms of 
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speed and resource usage. However, the complexity of its implementation increases 
with the size of the numbers, and specialized hardware is required to implement the 
algorithm.

To verify the proper functioning of the 8-bit Wallace Tree Multiplier, a simulation 
was performed in ModelSim. The testbench code is provided at the end of the docu-
ment. Figure 9 displays the simulation results, with the graph plotted using a postscript 
plotter. After conducting the multiplications, the results were found to align with those 
presented in Figures 10 and 11.

Figure 9. Testbench using ModelSim of the 8-bit Wallace Tree Multiplier. 
Source: Own work.

Figure 10. Time trial for the execution of sample operation. 
Source: Own work.

Figure 11. Time trial for performing a sample operation. 
Source: Own work.
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PARALLEL BOOTH MULTIPLIER
The Parallel Booth Multiplier (PBM) is an algorithm that employs the Barrett re-
duction technique to minimize intermediate products during multiplication [34-35]. 
Additionally, it can be easily parallelized, making it suitable for distributed systems 
and parallel processing setups. While it is more efficient than the Sequential Booth 
Multiplier (SBM), it is less efficient than the Wallace Tree Multiplier (WTM) in terms of 
speed.

As shown in Figures 12–14, the operation test benches illustrate the system’s 
response to each operation in relation to time for the hardware accelerator algorithm 
of the Parallel Booth Multiplier.

Figure 12. Simulation using ModelSim of the 8-bit Parallel Booth Multiplier. 
Source: Own work.

Figure 13. Time trial for the execution of sample booth operation. 
Source: Own work.
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Figure 14. Time trial for performing a sample booth operation. 
Source: Own work.

BAUGH WOLLEY MULTIPLIER
The Baugh-Wooley Multiplier (BWM) employs the technique of partial sums in a tree 
structure to reduce the number of required operations. It is particularly suited for 
multiplying large binary numbers, as it involves fewer operations compared to oth-
er multiplication algorithms. Its tree structure also facilitates easy implementation in 
parallel processing systems [36]. However, its efficiency decreases when multiplying 
numbers with an unequal count of ones and zeros.

As shown in Figures 15–17, the operation test benches illustrate the system’s 
response to each operation in relation to time for the hardware accelerator algorithm 
of the Baugh-Wooley Multiplier.

Figure 15. Test bench using ModelSim of the 8-bit Baugh-Wooley Multiplier. 
Source: Own work.

Figure 16. Time trial for the execution of sample baugh-wooley operation. 
Source: Own work.
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Figure 17. Time trial for the execution of sample baugh-wooley operation. 
Source: Own work.

In the comparison of multiplication times, the efficiency of each method is 
clearly observed. The results show that the Baugh-Wooley Multiplier achieves out-
standing performance in terms of speed at 10.82 ns, significantly surpassing the 
Wallace Multiplier at 13.03 ns and the Booth Multiplier at 15.75 ns. This optimized 
performance can be attributed to the specific sample operation used and the config-
uration of algorithms and data processed within the full adders and half adders.

Figure 18 presents a comparison of the debugging results for the three hard-
ware accelerator multipliers, focusing on the total logical elements used, the registers 
utilized in combinational logic, and the input and output pins.

Figure 18. Comparison of the summary flow of the multipliers. 
Source: Own work.

After scrutinizing the comparison results regarding the logical elements utilized 
in the multipliers, several key conclusions emerge. Specifically, it was observed that 
the Booth algorithm (151) demonstrated more efficient utilization of the available log-
ical elements when compared to the Wallace algorithm (168) and the Baugh-Wooley 
algorithm (159).
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Description of Scrutinizing:
1. Wallace Tree Multiplier (WTM)

• Architecture: The Wallace tree structure was used to reduce the par-
tial product matrix. It was constructed as a network of adders that 
reduced the partial products in stages until a final sum was reached.

• Mode of Operation: The partial products were generated, grouped, and 
reduced in multiple stages using half and full adders until only two rows 
remained. These rows were then summed to obtain the final product.

2. Parallel Booth Multiplier (PBM)
• Architecture: The Booth encoding algorithm was employed to reduce 

the number of partial products. This involved examining adjacent bits 
and determining whether to add, subtract, or shift.

• Mode of Operation: Booth encoding reduced the partial products, 
which were aligned and summed in parallel. A tree or array structure 
was used to efficiently combine these partial products.

3. Baugh-Wooley Multiplier (BWM)
• Architecture: This multiplier was specifically designed to handle two’s 

complement numbers. The architecture adjusted the partial products 
to ensure the final result was correct without additional steps for sign 
handling.

• Mode of Operation: The partial products were adjusted during genera-
tion to ensure the sign bits were handled correctly. Then, the adjusted 
partial products were summed in a manner similar to other multipliers.

Table 1 shows a comparison of the algorithms based on their architecture, 
focusing on the reduction of partial products, handling of negative numbers, addition 
stages, and the use of half adders and full adders.

Table 1. Description of scrutinizing architectures.

WTM (Wallace 
Tree Multiplier)

PBM (Parallel Booth 
Multiplier)

BWM (Baugh-Wooley 
Multiplier) Features

Partial Product Reduction Yes Yes (via Booth encoding) Yes

Handling of Negative Numbers Yes Yes (via Booth encoding) Yes (two's complement)

Reduction Structure Wallace Tree Tree or Array Array or Linear Reduction 

Stages of Addition Multiple Multiple Multiple 

Use of Adders Half and Full Half and Full Half and Full

Source: Own work.
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In addition to exploring various multiplication algorithms, this research venture 
also examined high-level programming languages to assess their efficacy in imple-
menting these algorithms. Beyond traditional hardware description languages like 
VHDL, Verilog, and SystemVerilog, the study expanded its scope to include popular 
languages known for their versatility, ease of use, and computational power. Python, 
MATLAB, Golang, C++, and Java were among the languages analyzed to evaluate their 
performance and suitability for executing multiplication algorithms. By broadening 
the analysis to include these diverse programming paradigms, the research aims to 
provide a comprehensive understanding of the interplay between algorithmic design 
and programming language selection in optimizing computational tasks.

Python, known for its simplicity, readability, and rich library ecosystem, as 
shown in Figure 19, exhibited a runtime of 100,130 ns. Despite being an interpreted 
language and generally slower than compiled languages, Python’s ease of use and 
versatility make it a popular choice for prototyping and experimentation, particularly 
in academic and research environments.

Figure 19. python excecution runtime code. 
Source: Own work.

Java, valued for its platform independence, robustness, and extensive ecosys-
tem, as shown in Figure 20, exhibited a runtime of 1,278 ns. While Java’s execution 
speed may lag behind compiled languages like C++, its portability and vast library 
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support make it a preferred choice for building cross-platform applications and large-
scale systems.

Figure 20. Java execution runtime code. 
Source: Own work.

C++, renowned for its efficiency, low-level control, and performance, as shown 
in Figure 21, demonstrated a runtime of 160 ns. Leveraging features such as pointers, 
memory management, and optimized compilers, C++ remains a dominant choice for 
high-performance computing tasks where speed is paramount.

Figure 21. C++ execution runtime code. 
Source: Own work.
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MATLAB, renowned for its computational capabilities and extensive mathemat-
ical functions, as shown in Figure 22, demonstrated a runtime of 6,800 ns. This out-
come highlights MATLAB’s proficiency in handling numerical computations, making it 
a preferred choice for algorithmic research and development tasks where mathemat-
ical precision is paramount.

Figure 22. Matlab execution runtime code 
Source: Own work.

Golang, recognized for its concurrency support and efficient runtime, as shown 
in Figure 23, recorded a swift runtime of 146 ns. Golang’s compiled nature and light-
weight concurrency mechanisms contribute to its suitability for performance-critical 
applications, including those involving complex computational tasks such as multipli-
cation algorithms.
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Figure 23. Golang execution runtime code. 
Source: Own work.

The findings of this study are systematically organized and presented in a tab-
ular format to facilitate clear comprehension and comparison. Through meticulous 
categorization, the results encapsulate crucial metrics such as execution times, algo-
rithmic efficiency, and programming language performance. By employing this struc-
tured approach, readers can discern patterns, draw correlations, and gain insights into 
the relative strengths and weaknesses of each multiplication algorithm and program-
ming language. Such an organized presentation not only enhances the accessibility 
of the research findings but also provides a framework for informed decision-making 
in future algorithmic implementations and language selections, as shown in Table 2.
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Table 2. Comparison of multiplier performance against programming languages. 

SOURCE 8 BIT OPERATION TIME
WALLACE TREE 13.03 nS

BOOTH PARALLEL 15.75 nS

BAUGH-WOLLEY 10.82 nS

PYTHON 100130 nS

C++ 160 nS

MATLAB 6800 nS

GOLANG 146 ns

JAVA 1278 nS

Source: Own work.

The results from Table 2, analyzed in Figure 24, were derived from supporting 
code found in the GitHub repository within the file named ‘multilanguage experienc-
es.’ When evaluating the multipliers in relation to operations performed in high-level 
programming languages, interesting insights emerge regarding their efficiency and 
ease of implementation. First and foremost, it is evident that hardware-implemented 
multipliers, such as Wallace, Booth, and Baugh-Wooley, outperform implementations 
in high-level programming languages in terms of speed. This can be attributed to the 
optimized nature of hardware multipliers and their ability to perform calculations in 
parallel.
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The research involved generating a bar chart illustrating the scaled operation 
time by programming language for 8-bit operations. Each bar represented a specific 
programming language, including Wallace Tree, Booth Parallel, Baugh-Wooley, Python, 
C++, MATLAB, Golang, and Java. The height of each bar corresponded to the scaled 
operation time, providing a visual comparison of the efficiency of each programming 
language in executing the specified operations. This chart proved instrumental in 
offering insights into the relative performance of different programming languages, 
thereby supporting decision-making processes related to algorithm selection and 
implementation strategies within the field of digital hardware design.

4. DISCUSSION AND CONCLUSIONS
The project successfully enhanced the efficiency of the multiplication algorithms by 
utilizing various register shifts and multipliers tailored to specific operation cases. In 
terms of operation time, the Parallel Booth Multiplier (PBM) was the fastest, with an 
average time of 10.82 nanoseconds, followed by the Baugh-Wooley Multiplier (BWM) 
at 13.03 nanoseconds, and the Wallace Tree Multiplier (WTM) at 15.75 nanoseconds. 
Regarding the use of logical elements, the PBM again proved to be the most efficient, 
requiring only 151 elements, followed by BWM with 160 elements, and WTM with 168 
elements.

Upon conducting a comparative analysis of multiplication algorithms for 8-bit 
systems—specifically the Wallace Tree Multiplier (WTM), Parallel Booth Multiplier 
(PBM), and Baugh-Wooley Multiplier (BWM)—several key insights emerged. Notably, 
although the PBM exhibited a slower operational speed compared to the other two 
algorithms, it demonstrated superior efficiency in terms of logical element utilization, 
using the fewest elements (151). Conversely, while the WTM had a mid-range oper-
ational speed, it required the highest number of logical elements (168). The BWM, 
however, emerged as the fastest of the three, striking a remarkable balance between 
operational speed and logical element efficiency, using only 159 elements. These 
findings underscore the multifaceted nature of algorithmic performance, highlighting 
the importance of considering both operational speed and resource utilization when 
evaluating and selecting multiplication algorithms for specific applications.

To further enhance multiplier speed, reducing the number of partial products 
in the modified Booth multiplier is crucial. Since multiplication involves a series of 
additions for these partial products, minimizing the number of such additions directly 
contributes to speed improvement.
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The choice between serial or parallel operations during multiplication depends 
on the application. In parallel operations, accumulation is key, especially in domains 
like digital signal processing (DSP) and multimedia information processing. In these 
contexts, parallel algorithms are efficient because they perform simultaneous opera-
tions using more hardware, as opposed to the slower serial processing.

When comparing Booth algorithm-based multipliers, it’s clear that the parallel 
implementation significantly outperforms the sequential version in terms of speed. 
However, the parallel multiplier performs well when both operands are positive or 
when one is positive and the other is negative, but it fails when both operands are 
negative. On the other hand, the sequential multiplier can handle both positive and neg-
ative numbers throughout the entire range, except for -128, where a sign error occurs.

From the results discussed, it can be concluded that the Baugh-Wooley Multiplier 
offers the best overall performance. It can handle both positive and negative numbers 
without restrictions and can be easily generalized for multiplications involving more 
bits.

5. DATA AVAILABILITY STATEMENT
Data associated with this paper and the described implementation are available under 
a creative common license in the GitHub of the Robotics and Industrial Automation 
Research, at the link https://github.com/AndresHernandezOrtega1/MULTIPLIERS.
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