
In
ge

ni
er

ía
 S

ol
id

ar
ia

Research article. https://doi.org/10.16925/2357-6014.2024.01.03
1	 Faculty of Engineering University of Cundinamarca Ubaté Campus
	 Email: gleonm@ucundinamarca.edu.co
	 orcid: https://orcid.org/0000-0003-3756-1330
	 Cvlac: https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00016

89491
2	 Faculty of Engineering University of Cundinamarca Ubaté Campus
	 Email: ylcasas@ucundinamarca.edu.co
	 orcid: https://scienti.minciencias.gov.co/
	 Cvlac: https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00010

48619
3	 Faculty of Engineering University of Cundinamarca Ubaté Campus
	 Email: sleonardocortes@ucundinamarca.edu.co
	 orcid: https://orcid.org/0000-0002-1317-9623
	 Cvlac: https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00018

41364
4	 Systems Engineering - University of Cundinamarca Ubaté Campus
	 Email: cecano@ucundinamarca.edu.co
	 orcid: https://orcid.org/0000-0003-3112-691X
	 cvlac: https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00014

01533

Mathematics as a basis
for the generation of
cryptographic tools

Las matemáticas como base para la generación de herramientas
criptográficas

A matemática como base para a geração de ferramentas criptográficas

Guillermo León Murcia1
Yeny Liliana Casas Méndez2

Segundo Leonardo Cortés López3

Cristian Eduardo Cano López4

Received: May 15th, 2023
Accepted: August 20th, 2023

Available: January 20th, 2024

How to cite this article:
G. León Murcia, Y.L. Casas Méndez, S. L. Cortés López, C.E. Cano López,

“Mathematics as a basis for the generation of cryptographic tools” Revista Ingeniería
Solidaria, vol. 20, no. 1, 2024.

doi: https://doi.org/10.16925/2357-6014.2024.01.03

https://orcid.org/0000-0003-3756-1330
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001689491
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001689491
https://scienti.minciencias.gov.co/
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001048619
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001048619
https://orcid.org/0000-0002-1317-9623
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001841364
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001841364
https://orcid.org/0000-0003-3112-691X
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001401533
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001401533

2 Mathematics as a basis for the generation of cryptographic tools

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 20, no. 1 / january-april 2024 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

Abstract
This article is the product of the research “Mathematics as a basis for the generation of cryptographic tools”,

developed at the Universidad de Cundinamarca, sectional Ubaté in the year 2021.

Problem: Improve the security of code with differential calculus, plane and spatial geometry, polar coordinates,

and functions; the resulting encryption should improve on the standards of current encryption systems.

Objective: Explain the algorithm’s operation with fundamental issues that use and generate a modification

proposal to make the algorithm more robust when subjected to an attack by unethical hackers.

Methodology: A bibliographic review, encryption codes, history of algorithms, and operation of SHA-256 in the

Ethereum platform and Bitcoin explains how it works and gives an idea of how to improve security.

Result: The algorithm’s operation is explained step by step using subject topics such as precalculus and cal-

culus. Also, topics such as functions, truth tables, logical operators, programming functions, and a way to

complicate the algorithm were proposed by applying issues of plane geometry, space, polar coordinates, ceiling

function, and absolute values.

Conclusion: It is possible to assimilate the operation of SHA-256 (256-bit secure hash algorithm) and the ma-

thematical basis for generating codes in hexadecimal, depending on the message to be encrypted. Algebraic

models allow taking different points of the figures generated in the Cartesian and polar planes to use them as

a means of encryption.

Originality: Explaining an algorithm widely used in encryption issues; however, according to a survey conducted,

only a few understood the code that explains the mathematics, all the aspects behind its operation, and why it

is so secure. In addition, the project proposes a way to improve its security.

Limitations: The algorithm used was a hyperbolic and linear function combined. In this sense, common random

points between the two functions are selected for encryption, and it is not aligned with the encryption systems

used in blockchains; it is a restriction for the implementation. Currently, several updates are aligned with the

SHA-256 system, involving limiting the inclusion of updated models.

Keywords: SHA-256, Blockchain, Ethereum, Cryptography, Security

Resumen
El artículo es producto de la investigación “Las matemáticas como base para la generación de herramientas

criptográficas” desarrollada en la Universidad de Cundinamarca, seccional Ubaté en el año 20021.

Problema: se quiere mejorar la seguridad del código con cálculo diferencial, geometría plana y espacial, coor-

denadas polares y funciones en las reales.

Objetivo: explicar el funcionamiento del algoritmo a partir de cuestiones fundamentales que utiliza y generar

una propuesta de modificación para hacer más robusto el algoritmo ante un ataque de hackers no éticos.

Metodología: realizar una revisión bibliográfica referente a códigos de encriptación, historial de algoritmos y

funcionamiento del SHA-256 (algoritmo de hash seguro de 256 bits) en la plataforma Ethereum y Bitcoin que

explica su funcionamiento y da una idea de cómo mejorar su seguridad.

Resultado: el funcionamiento del algoritmo explica paso a paso utilizando temas como precálculo, cálculo.

Además, se propusieron temas como funciones, tablas de verdad, operadores lógicos, funciones de programa-

ción y una forma de complicar el algoritmo aplicando temas de geometría plana, espacio, coordenadas polares,

función techo y valor absoluto.

3Guillermo León Murcia, Yeny Liliana Casas Méndez, Segundo Leonardo Cortés López,
Cristian Eduardo Cano López

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 20, no. 1 / january-april 2024 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

Conclusión: es posible asimilar el funcionamiento del algoritmo SHA-256 y la base matemática para gene-

rar códigos en hexadecimal, dependiendo del mensaje a encriptar. Los modelos algebraicos permiten tomar

diferentes puntos de las figuras generadas en los planos cartesiano y polar para utilizarlos como medio de

encriptación.

Originalidad: parte de la idea de explicar un algoritmo muy utilizado en temas de encriptación; sin embargo, en

una encuesta, solo algunos entendieron el código que explica las matemáticas, todas las cuestiones detrás de

su funcionamiento y por qué es tan seguro. Además, una idea propone formas de optimizarla.

Limitaciones: dado que el algoritmo ya está funcionando y aún no se han reportado roturas en su funciona-

miento. Una limitación puede ser que no se considere la sugerencia encontrada para modificar el código ya que

funciona bien, entonces esta sugerencia puede ser rechazada.

Palabras clave: Sha-256, Blockchain, Ethereum, Criptografía, Seguridad

Resumo
O artigo é produto da pesquisa “A matemática como base para a geração de ferramentas criptográficas” des-

envolvida na Universidade de Cundinamarca, seção Ubaté em 20021.

Problema: queremos melhorar a segurança do código com cálculo diferencial, geometria plana e espacial,

coordenadas polares e funções reais.

Objetivo: explicar o funcionamento do algoritmo com base nas questões fundamentais que ele utiliza e gerar

uma proposta de modificação para tornar o algoritmo mais robusto contra ataques de hackers antiéticos.

Metodologia: realizar uma revisão bibliográfica a respeito de códigos de criptografia, histórico de algoritmos e

funcionamento do SHA-256 (algoritmo hash seguro de 256 bits) na plataforma Ethereum e Bitcoin que expli-

que seu funcionamento e dê uma ideia de como melhorar seu segurança.

Resultado: O funcionamento do algoritmo é explicado passo a passo usando tópicos como pré-cálculo, cálcu-

lo. Além disso, foram propostos tópicos como funções, tabelas verdade, operadores lógicos, funções de pro-

gramação e uma forma de complicar o algoritmo aplicando tópicos de geometria plana, espaço, coordenadas

polares, função teto e valor absoluto.

Conclusão: é possível assimilar o funcionamento do algoritmo SHA-256 e a base matemática para geração de

códigos hexadecimais, dependendo da mensagem a ser criptografada. Os modelos algébricos permitem-nos

pegar diferentes pontos das figuras geradas nos planos cartesiano e polar para utilizá-los como meio de

criptografia.

Originalidade: parte da ideia de explicar um algoritmo muito utilizado em questões de criptografia; No entanto,

num inquérito, apenas alguns compreenderam o código que explica a matemática, todas as questões por trás

do seu funcionamento e por que é tão seguro. Além disso, uma ideia propõe formas de otimizá-la.

Limitações: pois o algoritmo já está funcionando e ainda não foram relatadas interrupções em seu funciona-

mento. Uma limitação pode ser que a sugestão encontrada para modificar o código não seja considerada por

funcionar bem, então esta sugestão pode ser rejeitada.

Palavras-chave: Sha-256, Blockchain, Ethereum, Criptografia, Segurança

4 Mathematics as a basis for the generation of cryptographic tools

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 20, no. 1 / january-april 2024 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

1. INTRODUCTION
The work presented below is framed in the line of research of learning, knowledge,
technologies, communication, and digitalization, founded by the University Research
Directorate. The seedbeds of the Ebaté group, founded in 2009, prioritized each of
the respective faculties of these academic units. The lines related to the field of
knowledge and accumulated production are generated specifically from the research
groups. The topic worked on in this article is an update of the SHA-1 algorithm, which
was rendered insecure by 2016, leading to the need for the improved security provided
by SHA-256. The aim of this research was to investigate the quantity and quality of
mathematical structures that compose it and give a point of view on how it improves
its level of security using more mathematical tools, then send an email to the NSA for
study and possible approval [1].

Pseudocode-based encryption has made it possible to encrypt messages at
a low computational cost to exchange an enormous amount of data to offer a new
generation of services. However, we believe that so far, the potential of the applica-
tions used for this purpose has not been significantly exploited, due to security issues
arising from the sensitive nature of the data handled by such programming languages.

Blockchain technology can contribute substantially to solving this problem by
providing integrity and privacy when using the hashes generated by SHA-256. However,
blockchains entail a significant demand for computational capabilities; fortunately,
today’s processors are able to meet this demand relatively easily [2].

The desire is to find a way to improve security while complicating code collision
by sacrificing hardware acceleration of the most computationally intensive part of the
code development that generates the hash corresponding to the encryption of a mes-
sage, be it image text or number text and/or combination thereof, typically consisting
of the massive computation of the hash function with the SHA-256 algorithm.

In addition to its essential role in blockchain deployment, the modification of
the SHA-256 code can benefit the encryption capabilities as it is desired to make it
more robust by strengthening the security schemes in the Digital Signature Algorithm,
SHA-256 being one of the most adopted cryptographic hash functions nowadays, due
to its security level, will generate more confidence if some fixed variables are changed
by random ones with specific conditions based on the actual variable calculation [3].

Although ideally a balance should be reached between the desired performance
and the available resources, especially the energy consumed and the computational
capacity, what is desired here is to sacrifice just that item of computational capacity
and machine resource to improve the integrity of the code, a sacrifice that is strength-
ened by the security issue and possible collision attack.

5Guillermo León Murcia, Yeny Liliana Casas Méndez, Segundo Leonardo Cortés López,
Cristian Eduardo Cano López

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 20, no. 1 / january-april 2024 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

As a contribution to the code and to improve the choice of SHA-256 algorithm
architecture for blockchain applications that best suit all requirements in each context,
this research proposes an enhancement that is configurable concerning various en-
cryption parameters. What is proposed can be adapted to achieve different levels of
machine resources to satisfy the security complexity of the algorithm in question[4].

1.1 REVIEW OF LITERATURE OR RESEARCH
BACKGROUND
To explain the encryption code’s operation, we established precalculus, calculus
and geometry analytics as bibliographic references [5], [6], [7], [8], [9], [10], [11], [12],
[13],[14],[15],[16]. With this compendium, it was possible to identify the topics of bina-
ry numbers, functions, truth tables, logical connectors, permutations, combinations,
rotations, and changes in variables. Additionally, various articles and documents were
used and listed as bibliographic references.

Vector calculus texts were used, such as Vector Calculus for Engineers by
Jeffrey R. Chasnov Source: The Hong Kong University of Science and Technology,
and articles such as vector spaces by M.A. García Sánchez and T., Ramírez Alzola, the
Vector Calculus by Juan Guillermo Rivera Berrío, and Elena Esperanza Álvarez Sáiz
for improvements in encryption. Vector calculus is based on developing and applying
the four operations, including gradient, rotor, divergence, and laplacian. In Cartesian
coordinates, hyperbola, the line was transformed to polar coordinates with the help of
the texts mentioned above.

Among the journals used for this article is the Journal of Solidarity Engineering,
volumes 5 and 17 [17],[18]. The information works as a reference for the conditions
needed by the functions, which will be encrypted and explained so that students from
the first to the seventh semester can understand how the code of SHA-256 works.
It was also possible to establish that it was necessary to contribute to the research,
which would consolidate all this information and serve as a basis to make the code and
have a more significant degree of security; similarly, reducing the risks of any attack
that could occur in terms of vulnerability by third parties overcoming the exploitation
of these.

2. MATERIALS AND METHODS
Performing a comparison exercise, if one asks, “What is the interpretation of what is
written in the text of Table I?”, they will probably perceive meaningless or incoherent

6 Mathematics as a basis for the generation of cryptographic tools

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 20, no. 1 / january-april 2024 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

data. However, this is part of the result of encryption through this algorithm, suggest-
ing relevant information stored in these characters.

This research focuses on the mathematical explanation of the behavior of this
encryption. Thus, describing the process through algebra and the theoretical basis
this process entails. In addition, a contribution from the number theory, graph theory,
and algebraic geometry to improve the result of the encryption process.

TABLE I. Encryption example

Hvjmmfsnp Mf´pm

Source: Own work

If we carefully analyze, we can observe that the letters of the two hidden words
are encrypted simply under the following rule:

Either f(a,b,c,...,y,z) = a, b, c, d, e, f, g, h, i, j, k, l, m, n, ñ, o, p, q, r, s, t, u, w, x, y, z; A
function with which it can generate words of any kind such as names, things, places,
among others.

In this case, for the letters of Guillermo León’s words, we assign a change in
their writing with a condition. For each encrypted letter, it places the letter in the order
of the alphabet, as shown in Table II.

TABLE II. Original vs. encrypted name

Original G u i l l e r m o L e ó n

Encrypted H v j m m f s n p M f p´ o

Source: Own work

The previous encryption was creatively written with a low level of encryption.
It seeks to explain through an example of more advanced encryption how Ethash
works. It is the latest version of the Dagger-Hashimoto algorithm, which is proof-of-
work (PoW) and is used to encrypt Ether, which is the Ethereum cryptocurrency. Based
on this, we will talk about SHA-256 and its operation.

7Guillermo León Murcia, Yeny Liliana Casas Méndez, Segundo Leonardo Cortés López,
Cristian Eduardo Cano López

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 20, no. 1 / january-april 2024 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

To explain the SHA-256 algorithm’s operation, it is necessary to convert the
message to be encrypted to the binary system, considering that this can be a numeric,
alphanumeric, string, document, or image value.

Subsequently, the procedure explains the sum in modules from two to thir-
ty-two and the conditions of how it should apply to encryption. Then, the conditions of
operator XOR are mentioned, as well as the functions that are used and programmed,
together with the use of words and constants already declared from the hexadeci-
mal code. Additionally, the importance of the application in blockchain, bitcoin, and
Ethereum technologies is indicated.

Within the functions used by the algorithm for encryption, there is one called
Right Rotate, called RotR (x, n), being x a binary array of 32 bits; and ̈ n ̈ , a displacement
number that will make the variety. This arrangement consists of taking the last binary
digit and placing it at the beginning of the agreement, as its name says. It rotates as
often as desired in the initial arrangement to modify its structure and thus generate a
new array of 32 bits but with a different order [19].

Before continuing, we will revisit the topics we will use in mathematics and
computer science, such as ASCII code, binary system, hexadecimal system, module
function, and XOR operator.

The code ASCII (American Standard for Information Interchange) is the
American standard code for the exchange of communication. It is a numerical code
whose purpose is to represent the characters. Each character has a code associated
that identifies it as unique from the other characters, which, when standardized, allows
for a dynamic communication between our native language and the language of the
computer. In 1963, this code was born. In 1967, this code grew to include lowercase
and numbers, and in 1981 the code was updated and generated the 8 bits today known
with 256 characters divided into three groups. First, the control characters used to
control devices range from 00 to 31. Second, the printable characters range from 32
to 127, and third, extended characters that are graphic and unique characters from 128
to 255, as depicted in the following table.

8 Mathematics as a basis for the generation of cryptographic tools

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 20, no. 1 / january-april 2024 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

TABLE III. The ASCII Code

Reference: [20]

 As an example of how it works, using the word in our native language to greet
“HELLO” (HOLA in Spanish). As seen in the table, the capital letter H = 72, the letter
O = 79, the letter L = 76, and A = 65, so now our HOLA became 72 79 76 65, which is
passed to binary code. Transforming a number to binary is done as follows.

72/2 = 36 with residue 0
36/2 = 18 with residue 0
18/2 = 9 with residue 0
9/2 = 4 with residue 1
4/2 = 2 with residue 0
2/2 = 1 with residue 0

So, 72 written in binary code is 1001000. The same is done with the numbers
79, 76, and 65.

Finally, zeros are added to complete this string of 8-bit ones and zeros.

H = 72 = 01001000 O = 72 = 01001111
L = 76 = 01001100 A = 65 = 01000001

9Guillermo León Murcia, Yeny Liliana Casas Méndez, Segundo Leonardo Cortés López,
Cristian Eduardo Cano López

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 20, no. 1 / january-april 2024 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

So, our HOLA for the computer is 01001000 01001111 01001100 01000001
A binary system or base two systems whose original characters are only 0

and 1 is because, in the computer language, there are only two possibilities either:
the voltage step is needed, or it is not needed. If there is or one is required, one is
assigned. If there is not or it is not needed, then it is given a 0, and the name of the bit
is set. Thus, the computer receives a sequence of bits, given from our native language,
homologated to the programming language.

The binary system uses a power rule, as shown in the following table.

29 28 27 26 25 24 23 22 21 20

512 256 128 64 32 16 8 4 2 1

With this assignment, we can discover what number written in binary represents
in our native language.

Código binario 1 0 0 1

Asignación 23 22 21 20

Resultado 8 4 2 1

Multiplicación 1 x 8 0 x 4 0 x 2 1 x 1

Valor total 8 0 0 1

Figure 1. Relationship of binary numbers
Source: Own work

Then we just add 8 + 0 + 0 + 1 = 9 so that 1001 = 9
If you want to convert text to binary, you need to follow two procedures, go from

ASCII code to binary.
Module function MOD() is a function that demonstrates if two numbers can

be divided precisely or otherwise isolate the residue or remainder of a calculation in a
division. Let’s see why 18 MOD(7) = 4

18 7
-14 2
4

As can be seen, when dividing 18 by seven, the remainder is 4, that is to say,
MOD() divides one number by another and delivers; as a result, its residue, in comput-
ing, works like this, MOD (number1, number2), the conditions are:

10 Mathematics as a basis for the generation of cryptographic tools

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 20, no. 1 / january-april 2024 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

Number1
A first input parameter is a number with a value of type INTEGER, SMALLINT,

BIGINT, or DECIMAL. If each parameter is of type DECIMAL, the other parameter must
also be a DECIMAL type. If each parameter is an INTEGER value, the other parameter
can be INTEGER, SMALLINT, or BIGINT. Both parameters can be SMALLINT or BIGINT,
but one parameter cannot be SMALLINT if the other is BIGINT.

Number2
A second input parameter is a number with a value of type INTEGER, SMALLINT,

BIGINT, or DECIMAL. The same data type rules apply to numbers two and number
one [5].

The XOR operator is a binary operator that has one output whenever the inputs
are not equal, which occurs when one of the two inputs is exclusively true. This is the
definition that coincides with the mod sum (2). We see its purpose:

0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

Hex notation is a numbering system based on sixteen, which uses the digits
0123456789ABCDEF. It has 16 symbols that can represent a single digit—considering
the powers of 16, which are 161 = 16, 162 = 256, 163 = 4096, 164 = 65 536, 165 = 1 048
576, and so on. Passing the number 1 779 033 703 to hexadecimal requires dividing it
into 16 as many times as necessary until the residue is less than 16. In this case, the
residues are 7, 6, 6, 14, 9, 0, 10, 6, which in hexadecimal is 6A09E667.

The hexadecimal system facilitates reading large numbers or very long se-
quences of bits since they group them into four bits. In the former ASCII codes, the
Hexa numerical system is used in the source and destination addresses of Internet
protocols in IP addresses.

Functions used in the encryption process.
Below are listed some of the functions that serve as the basis for the encryption

process and are part of the background process consulted for elaborating the project.
The Right Shift function is called ShR(x,n), where x is a 32-bit array and “n” is

the number of rotations that are required so that the last digit of that array does not
rotate but becomes zero.

11Guillermo León Murcia, Yeny Liliana Casas Méndez, Segundo Leonardo Cortés López,
Cristian Eduardo Cano López

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 20, no. 1 / january-april 2024 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

The Sigma function named δ0(x) takes the above two parts and becomes δ0(x)
= (RotR(x,n) ⊕ RotR(x,n)) ⊕(ShR(x,n)), where n has the same conditions as the previous
functions and ⊕ is the operator “XOR” which works in binary code leaving one if you
have 0 and 1 or 1 and 0 and leaves 0 if you have 1 and 1 or 0 and 0.

The Choose function Ch(x,y,z) accepts three arrays, each of 32 bits, named
Ch(x,y,z) = (xɅy) ⊕ (¬xɅz). It uses the other two functions and decides between two of
the three functions with the operator XOR, considering the negation of the first array
to combine it with the operator y (Ʌ).

The Majority Maj(x,y,z) function, named Maj(x,y,z) = ((xɅy) ⊕ (xɅz)) ⊕ ((yɅz)),
combines the three arrays 1 to 1 with the operator Ʌ and then the distributive property
for the operator ⊕ [21].

These functions operate depending on the message the user assigns to the
variables X, Y, or Z. In the end, they become a string of bits. When this arrangement
is obtained, one is added and converted to 32 bits adding how many zeros are nec-
essary depending on the conditions of the message you want to encrypt. It becomes
binary at 64 bits, and this message extends to N pieces of 512 bits converted to
sexagesimal [22].

You then have a message that must pass to binary code; the characters are
counted and multiplied by 8 to obtain the number of bits; followed by this, a one is
added to the binary message. To complete the array, you must place x number of zeros
to the prior number of bits that were obtained to pass the message to binary using
the following formula x = (448 – L –1) mod 512, where “L” is the length of the original
message, [8],[9]. As a result, a note should show how module 512 is applied. After this,
the message is completed by passing to binary and ending with zeros on the left of
the array until obtaining a 64-bit display. Therefore, this should result in a 512-bit array
or multiple of 512.

Encryption continues to divide the message into N parts; this is done by divid-
ing the extended message into 512. As 1024 is a multiple of 512, then N will be an
integer that establishes the parts into which the message should be divided for later
encryption.

At this moment, there are 8 HASH; these HASH are tables that store records
and objects and then perform the search in base 0 and 1 [10], which must be used as
follows: hash number 1 called H0 = 1779033703 which is written in decimal and must
be passed to hexadecimal, so it happens with eight codes called hash, which is based
on the behavior of the first square roots of prime numbers.

How do these HASHes work? Well, the square roots of 2,3,5,7,11,13,17,19 num-
bers are expressed in decimal form, so √2=1.41421356237309504880168872420969

12 Mathematics as a basis for the generation of cryptographic tools

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 20, no. 1 / january-april 2024 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

8078 56967 which to pass to binary has 1.01101010000010011110011001100110011
11111100111 10011100110111. Now we take the first 32 bits after the point, that is the
fractional part of the square root of two, 1.011010101000011110011100111110011111
0011110111011101110 which is 1779033703. This number is written in a hexadecimal
form called Ho, so Ho = 6a09e667. Similarly, it is done with h1, h2, h3, h4, h5, h6, h7,
and h8 [23].

We generate the N pieces of our code with the message in binary code. We will
generate eight new registers from Ho to H7 [24], different from the hashes already
known previously. These assignments assign letters from A to H, which initiates in
32-bit zeros for every 1 64 constants called w1 to w64. As they are 32-bit arrays, a
division of 512 digits of the original message makes it into 32 parts; in this way, 16
displays of 64 are obtained that must be finished. To complete the arrays from W17 to
W64, we will use the following formula and give an example of how it works in Word 17.

(1)

This sum is made in modules 2 to 32, as shown below.

At this moment, a question arises: What happens to parts other than 1 with w1?
Two temporary variables, T1 and T2, are created [25].

(2)

(3)

After performing the previous procedure, the following process continues:

An “h” is assigned “g”, 	
A “g” is assigned “f”,
An “f” is assigned “e”,

13Guillermo León Murcia, Yeny Liliana Casas Méndez, Segundo Leonardo Cortés López,
Cristian Eduardo Cano López

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 20, no. 1 / january-april 2024 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

An “e” is assigned “d” + T1,
A “d” is assigned “c”, 	
A “c” is assigned “b”,	
A “b” is assigned to “a”,
and an “a” is assigned T1+T2

The last piece is completed, as shown below. 	

Ho = a + Ho  	
H1 = b + H1
H2 = c + H2 	
H3 = d + H3 	
H4 = e + H4 	
H5 = f + H5 	
H6 = g + H6 	
H7 = h + H7

All the hashes are joined, a process with which a binary code is subsequently
generated. When passed to hexadecimal, it corresponds to the encrypted message as
desired from the beginning [26].

APPLICATION OF HYPOTHESES
To contribute to the research that was done, we want to complicate the SHA-256
algorithm. For this, we came up with an idea to apply basic concepts of differential
calculus, plane geometry, and polar coordinates.

Now, new modeling is applied to these functions to identify their behavior and
possible solutions within the encryption process. For example, we take:

Right Rotate = RotR(x,n)
Shift Rotate = ShR(x,n)
δ0(x) = RotR(x,n) ⊕ RotR(x,n) ⊕ ShR(x,n).

The n is what we want to complicate in the Code since they are the number of
rotations of the 32-bit array. Starting with a hyperbola and a line under normal condi-
tions, whose equations are x2/a2 – y2/b2 = 1 ̈y ̈ y = x, respectively.

14 Mathematics as a basis for the generation of cryptographic tools

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 20, no. 1 / january-april 2024 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

In this way, the generalized form of the hyperbola and
the line

y = mx + b is obtained.

Given these conditions, a specific method is used to generate a number “n” for
the encryption of the program [27].

Starting with a circumference in the xy plane of the form x2 + y2 = r2
a line is located on the circumference tangent to the rim but on the XYZ plane,

as shown below.
Vector tangent to the circumference
Autonomously, a point was created that moves positively and negatively on that

line. The circumference is rotated, which may or may not vary in radius as desired, so
the following figure is obtained.

Figure 2. Random points between a hyperbole and a line.
Source: Own work

This way, we can use the polar coordinates to establish that n = r cos (θ). Since
this generates a decimal and that, in the rotations of the function, does not make
sense, we make “n” an integer by placing the roof function and using its absolute value

15Guillermo León Murcia, Yeny Liliana Casas Méndez, Segundo Leonardo Cortés López,
Cristian Eduardo Cano López

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 20, no. 1 / january-april 2024 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

In this way, “n” is a positive integer as needed by the roles to which you intend
to change those rotations [28],[29].

3. RESULTS
The algorithm uses several functions in its encryption process, but we will rely on 5
specifically, RotR(x,n), Right Shift ShR(x,n), Majority Maj(x,y,z), and Sigma δ(x), and
Sigma subzero δ0(x). What do these functions have in common? They use a number
“n” to generate different rotations in arrays of 32 bits. These rotations are specific
to that value of “n”, and rely on the properties of randomness, where randomness
is intrinsic as a phenomenon of repetition in other spaces. It is here where I want to
emphasize that the programming performed in the algorithm used these 5 functions
that I mentioned above to which we want to remove the specific numbers and include
the random factor and then verify that these rotations can generate a better encryp-
tion process in terms of security level, which increases security and the difficulty of
access in case of attack [30].

It is important to consider that even after being validated, the algorithm is
susceptible to changes that will surely improve its performance; whilst we must also
consider the surprises in store with the advent of quantum computing and what it will
bring for this type of encryption.

To improve its security the step to follow was to program the algorithm in Python
where it is evident that the number “n” does not present a random behavior, since in
doing so it generates a hash different from the original. These represent the number
of rotations of each array uniquely, as evidenced in the following lines of programming.

...for “”” in range (64):
 #Choice = (e and f) xor ((not e) and g).
 Choice = Ch(e, f, g).
 #Σ1 = (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate 25).
 Σ1 = Xor(Xor(Xor(RotR(e, 6), RotR(e, 11)), RotR(e, 25)) # Original....

that is, with n=6, 11, and 25 the code works perfectly. Now, if we make that
n=|⌈rcosθ⌉| under the conditions expressed in this article, then whoever wants to make
the attack must know the way the algorithm selects the point that meets the neces-
sary and sufficient conditions to guarantee the existence of that “n”. (The complete

16 Mathematics as a basis for the generation of cryptographic tools

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 20, no. 1 / january-april 2024 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

explanation regarding the choice of “n” can be requested by emailing gleonm@ucun-
dinamarca.edu.co)

The evidence is constant and must remain unique to generate the hexadecimal
code, but this cannot be done from here, it must be done in the main server and
rename the algorithm; that is why a notification will be sent to the National Security
Agency (NSA) and the National Institute of Standards and Technology (NIST), which
were the creators of the code, to decide whether the suggestion applies or not. [31].

4. DISCUSSION AND CONCLUSIONS
When a message is encrypted with the conditions in which the algorithm was validat-
ed, a hash code is generated in approximately “Elapsed time: 0.0149998665 seconds.”
with a function called “time it”. After we implemented the value of n=|⌈rcosθ⌉|, the
Elapsed time rose to 0. 0327768666 seconds, which tells us that it requires more ma-
chine processing and must do more randomness calculations to find the same hash,
this machine time is too much when someone wants to breach a transaction from a
malicious aspect.

The characteristics of the mathematical components of SHA-256 seem to pro-
vide a better level of security than the hash functions that precede it such as SHA-1.
Although the relative number of iterations is somewhat higher than SHA-1, it was pos-
sible to improve it significantly after implementing randomization in the 5 functions
by improving the selection criteria and security arguments, creating a difficult path to
reconstruct the encrypted message from the specification given to the constant “n”.

We showed that it is still possible to improve the level of encryption security
that can lead to a collision, although the response time is longer, and as expected
also increases weight and the presence of both Cartesian and polar functions so that
each step makes it very difficult to find the numbers needed to generate the hash
corresponding to the encrypted message.

We have presented some ideas on how to modify and improve the encryption
code and we have increased the probability of a local collision in SHA-256 which can
lead to a false sense of security when compiling the code because it is a power of
increasing exponent.

Thanks to the research carried out on the operation of the algorithm, it was
evident that when programming it in Python and following each of the instructions de-
scribed there, a space uses the values defined as constants in functions. For example,
RotR(x,n), Right Shift ShR(x,n), Majority Maj(x,y, z) and Sigma δ(x), and Sigma subzero
δ0(x) show that the form of encryption becomes predictable. A way to optimize the

17Guillermo León Murcia, Yeny Liliana Casas Méndez, Segundo Leonardo Cortés López,
Cristian Eduardo Cano López

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 20, no. 1 / january-april 2024 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

algorithm is by placing specific numbers that only the algorithm knows since it must
satisfy a hyperbolic function in the octal plane with real numbers.

It is possible to correctly assimilate the operation of the SHA-256 algorithm and
the mathematical basis to generate the different codes in hexadecimal, according to
the message required to encrypt.

Mathematically, algebraic models generate different points that allow taking in
the figures generated in the Cartesian and polar planes to use them as a means for en-
cryption. Still, these models must work on the initial conditions and the corresponding
constants. Here, we have found a way to perform encryption with random numbers by
increasing the difficulty of breaking code, using commonalities between the hyperbol-
ic and linear functions, contributing to possible uses in blockchain security.

The article presents a precise cryptographic analysis of each of the parts. A
message is composed of text-type, numeric, alphanumeric, or image data located in
the cryptosystem defined by a mathematics protocol, including algebra, geometry,
differential calculus, and precalculus. Other crucial aspects will be discussed, such as
the different data, types, formats, and their distribution in the structure of the block. As
well as the logical-mathematical operations of the cryptographic function SHA-256,
which is susceptible to modification to improve its level of security that is used to
generate a component resulting hash, that is, a result that meets the characteristics
defined in the encryption protocol.

Finally, this hash will not change because its uniqueness does not allow it.
However, it still represents the encryption from the original message, where its level
for decryption will be enhanced. Therefore, it will be able to feed the blocks in what is
known as the chain of blocks, or as the creator, Satoshi Nakamoto himself originally
called it, the timing chain today blockchain.

The SHA-256 (256-bit Secure Hash Algorithm) is one of the most prominent
cryptographic hash functions for safeguarding data integrity in computer security
applications such as digital signature and password authentication.

However, despite SHA-256’s acknowledged robustness in resisting attacks, it
cannot be considered invulnerable. Among the potential attacks that can undermine
its integrity, the so-called “brute force attack” stands out. This type of attack involves
systematically testing all possible combinations of inputs until the one that corre-
sponds to the desired hash is found.

Although SHA-256 is admittedly highly resilient to attacks, it is worth noting
that, in theory, a cyber attacker could resort to brute-force methods to breach the
security of the hash. However, the execution of such an attack requires a significant
deployment of computational resources and considerable time to achieve success.

18 Mathematics as a basis for the generation of cryptographic tools

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 20, no. 1 / january-april 2024 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

In conjunction, it is evident that, despite the theoretical vulnerability of SHA-256
to brute force attacks its security remains robust, due to the inordinate number of
combinations that an attacker must test, resulting in an extremely low probability of
success.

There is another attack called the “dictionary attack”, characterized by the test-
ing of common words or character strings, instead of the totality of possible combi-
nations. Also included is the “collision attack”, in which two different inputs generate
the same hash value.

To date, SHA-256 has exhibited resistance to these types of attacks. However,
on a theoretical level, the eventuality of collisions cannot be ruled out, given the re-
striction on hash length. In parallel, the “pre-image attack” is contemplated, which
involves finding an input that produces a specific hash. SHA-256 is characterized by
its resistance to this type of attack, attributable to the intricate complexity of the pre-
image computation.

Additionally, “extended length attacks” reveal a type of threat that exploits the
lack of resistance of the original hash function to malicious data extensions. To mitigate
this vulnerability, techniques such as HMAC (Hash-based Message Authentication
Code) and analogous strategies are commonly implemented.

Broadly speaking, SHA-256 remains a secure and widely employed choice in
most security applications. In even more challenging contexts, quantum computing
could limit the options, while ensuring the optimization of computational resources
and time.

Therefore, the need to review and modify the “n” rotations in 3 specific functions
RotR(x,n), δ0(x), and ShR(x,n) is raised. This paper goes into the exploration of a strate-
gy that sacrifices computational resources to increase the probabilities of discovering
potential vulnerabilities in the code and making possible attacks with a high degree
of computational difficulty. In this context, the creation of an intersection between a
hyperbolic function and a non-canonical linear function is proposed, generating points
in common.

These points are then converted into polar coordinates using the formula of the
cosine of the angle of inclination multiplied by the normal distance of the point. As a
result, a decimal number is obtained, to which the roof function is applied. Since the
options are translated into negative and positive values, the absolute value function is
run as an integral part of the analytical process. In this way, the number of rotations
assigned to the new rotation “n” is significantly increased, even at the cost of compu-
tational capacity.

19Guillermo León Murcia, Yeny Liliana Casas Méndez, Segundo Leonardo Cortés López,
Cristian Eduardo Cano López

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 20, no. 1 / january-april 2024 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

5. REFERENCES
[1]	 N-ABLE, SHA-256, Algorithm Overview: ¿What is SHA-256? 2019, p.1. [Online]. Available: https://

www.n-able.com/blog/sha-256-encryption

[2]	 S. Sánchez. P. Domínguez y. L. Velázquez, Hashing: Técnicas y Hash para la Protección de

Datos. 2011, pp. 4-5. [Online]. Available: https://www.laccei.org/LACCEI2018-Lima/student_

Papers/SP96.pdf

[3]	 AWS, Funciones matemáticas. Funcion MOD. 2022, p.1. [Online]. Available: https://docs.aws.

amazon.com/es_es/redshift/latest/dg/r_MOD.html.

[4]	 S.L. Bitcoinforme, ¿Qué es el algoritmo de minería Ethash? 2015, Agosto 4, p.1. [Online].

Available: https://academy.bit2me.com/que-es-algoritmo-de-mineria-ethash/#0e04f783a4

a3503a8

[5]	 S. James, Cálculo. Transcendentes tempranas. 7ª edición. Grupo Editorial Thomson Learning.,

2013, pp. 10-58

[6]	 L. Ron, B. Edwards, Cálculo, tomo I. décima edición, Grupo Editorial Cengage Learning., 2014,

pp. 383-3891.

[7]	 D. Zill, J. Dewar, Ecuaciones diferenciales con problemas con valores en la frontera, Octava

Edición, España, (2013). pp. 182-189.

[8]	 J. Stewart, Cálculo de una variable. Transcendentes tempranas. 7ª edición. Thomson. 2012,

pp. 10-71

[9]	 L. Leithold, Cálculo con Geometría Analítica. 7 edición Editorial Harla. México. 1978 pp. 2-10,

68-75.

[10]	 G. Thomas, Calculus Thomas. Special Edition. México, 2018, pp. 535-545.

[11]	 R. Larson, R. Hostetler, B. Edwards, Cálculo de una variable, Volumen 1. novena Edición. Mc.

Graw Hill. Méjico. 2018, pp. 390-399.

[12]	 C. Edwards, H. Jr.; Penney, E. David, Cálculo con Geometría Analítica. Novena edición. Prentice

Hall. 2018, pp. 59-69.

[13]	 T. Apóstol, Análisis matemático. Editorial Reverte: Barcelona, 1991. pp. 581-589.

https://www.n-able.com/blog/sha-256-encryption
https://www.n-able.com/blog/sha-256-encryption
https://www.laccei.org/LACCEI2018-Lima/student_Papers/SP96.pdf
https://www.laccei.org/LACCEI2018-Lima/student_Papers/SP96.pdf
https://docs.aws.amazon.com/es_es/redshift/latest/dg/r_MOD.html
https://docs.aws.amazon.com/es_es/redshift/latest/dg/r_MOD.html
https://academy.bit2me.com/que-es-algoritmo-de-mineria-ethash/#0e04f783a4a3503a8
https://academy.bit2me.com/que-es-algoritmo-de-mineria-ethash/#0e04f783a4a3503a8

20 Mathematics as a basis for the generation of cryptographic tools

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 20, no. 1 / january-april 2024 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

[14]	 P. Ruiz. Cálculo vectorial. Prentice-Hall Hispanoamericana. 2018, Pp. 44-50.

[15]	 R. Jiménez, Matemáticas VI. Cálculo Integral. México: Pearson Educación, 2013, Pp. 129-133

[16]	 W. Granville, Cálculo Diferencial e Integral. México: Editorial Limusa. 2018. Pp. 179-189.

[17]	 J. A. Ortega, “Performance of routing and spectrum allocation (RSA) algorithms for a last ge-

neration centralized optical network (SDON)”, Revista Ingeniería Solidaria, vol. 17, no. 2, pp.

1–30, May 2021. https://doi.org/10.16925/2357-6014.2021.02.08

[18]	 J. G. Ferrer Rodríguez, “System of Inductive Reasoning Based on Genetic Algorithms For

The Solution Of Problems In Conditions Of Imprecise Information Part I”, Revista Ingeniería

Solidaria, vol. 5, no. 9, pp. 21–26, Jan. 2010. https://doi.org/10.16925/issn.1900-3102

[19]	 G. Diáz, Ethereum: historia de la plataforma de contratos inteligentes más usada. 2018,

Julio 30, p.1. [Online]. Available:https://www.criptonoticias.com/tecnologia/ethereum

-historia-plataforma-contratos-inteligentes-usada/

[20]	 Comité Estadounidense de Estándares. El codigo ASCII. [Online]. Available: https://elcodi-

goascii.com.ar/

[21]	 J.Minimalsm, Máquina Virtual De Ethereum (Evm). [Online]. Available: https://ethereum.org/

es/developers/docs/evm/, 2022, 12 agosto, p.1

[22]	 S.L. Bitcoinforme ¿Qué es un DAG? 2015, agosto 4, p.1 [Online]. Available:https://academy.

bit2me.com/que-es-un-dag/

[23]	 D. Rachmawati, J. Tarigan, y M. Ginting, ABC, “Un estudio comparativo de Message Digest

5 (MD5) y el algoritmo SHA256,” Journal of Physics: Serie de conferencias, vol. 978, no. 1, pp.

012116. DOI:10.1088/1742-6596/978/1/012116

[24]	 X. Fan, B. Niu, Implementación basada en arquitectura multinúcleo y SIMD en SHA-256 de

Blockchain. In: Xu, K., Zhu, J., Song, X., Lu, Z. (eds) Blockchain Technology and Application.

CBCC 2020. Comunicaciones en Informática y Ciencias de la Información, vol 1305. Springer,

Singapur. https://doi.org/10.1007/978-981-33-6478-3_4

[25]	 H. Yoshida, A. Biryukov, “Análisis de una variante SHA-256. En: Preneel, B., Tavares, S. (eds)

Áreas seleccionadas en criptografía,” Lecture Notes in Computer Science, vol 3897. Springer,

Berlín, Heidelberg, 2016. https://doi.org/10.1007/11693383_17

https://doi.org/10.16925/2357-6014.2021.02.08
https://doi.org/10.16925/issn.1900-3102
https://www.criptonoticias.com/tecnologia/ethereum-historia-plataforma-contratos-inteligentes-usada/
https://www.criptonoticias.com/tecnologia/ethereum-historia-plataforma-contratos-inteligentes-usada/
https://elcodigoascii.com.ar/
https://elcodigoascii.com.ar/
https://academy.bit2me.com/que-es-un-dag/
https://academy.bit2me.com/que-es-un-dag/
http://dx.doi.org/10.1088/1742-6596/978/1/012116
https://doi.org/10.1007/978-981-33-6478-3_4
https://doi.org/10.1007/11693383_17

21Guillermo León Murcia, Yeny Liliana Casas Méndez, Segundo Leonardo Cortés López,
Cristian Eduardo Cano López

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 20, no. 1 / january-april 2024 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

[26]	 W. Andrew, N. Appel, “Verification of a cryptographic primitive: SHA-256,” ACM Trans.

Program. Lang. Syst. vol. 37, no. 2, pp. 31. doi: https://dx.doi.org/10.1145/2701415

[27]	 R. Martino, A. Cilardo, “Designing a SHA-256 processor for blockchain-based IoT applications,

Internet of Things”, vol. 11, 2020, 100254. https://doi.org/10.1016/j.iot.2020.100254. P.1

[28]	 M. Padhi, R. Chaudhari, An optimized pipelined architecture of SHA-256 hash function, 2017

7th International Symposium on Embedded Computing and System Design (ISED), Durgapur,

India, 2017, pp. 1-4. doi: 10.1109/ISED.2017.8303943.

[29]	 I. Ahmad, A. S. Das, “Hardware implementation analysis of SHA-256 and SHA-512 algorithms

on FPGAs,” Computers & Electrical Engineering, vol. 31, no. 6, pp. 345-360. doi https://doi.

org/10.1016/j.commpeleceng.2005.07.001.

[30]	 G. Bertoni, J. Daemen, M. Peeters, V. Aasche, The Keccak SHA-3. submission – version 3. 2017,

p.1. [Online]. Available: https://keccak.team/files/Keccak-submmission-3.pdf

[31]	 M. Kammoun, M. Elleuchi, M. Abid y M.S. BenSaleh, “Implementación basada en FPGA

del algoritmo hash SHA-256”, Conferencia internacional IEEE 2020 sobre diseño y prue-

ba de micro y nanosistemas integrados (DTS), 2020, pp. 1-6. doi: https://doi.org/10.1109/

DTS48731.2020.9196134

https://dx.doi.org/10.1145/2701415
https://doi.org/10.1016/j.iot.2020.100254. P.1
https://doi.org/10.1016/j.commpeleceng.2005.07.001
https://doi.org/10.1016/j.commpeleceng.2005.07.001
https://keccak.team/files/Keccak-submmission-3.pdf
https://doi.org/10.1109/DTS48731.2020.9196134
https://doi.org/10.1109/DTS48731.2020.9196134

