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Abstract 

Introduction: This article is a product of the research “Ensemble methods to estimate the academic perfor-

mance of higher education students”, developed at the Universidad Distrital Francisco José de Caldas in the 

year 2021, focusing on the review of research work developed in the last five years related to the prediction of 

academic performance using ensemble algorithms. 

Objective: The literature review aims to identify the most used algorithms and the most relevant variables in the 

prediction of academic performance.

Methodology: A systematic review of the literature was carried out in different academic databases (Science 

Direct, Scopus, SAGE Journals, EBSCO, ResearchGate, Google Scholar), using search equations built with 

keywords.

Results: 54 related articles were found that meet the inclusion criteria of the review. Additionally, benefits were 

found in the application of ensemble methods in the prediction of academic performance.

Conclusion: It was found that the most influential variables in academic performance correspond to the aca-

demic factor. The algorithm used that presents the best results is Random Forest; in addition to being the 

most used. The use of these algorithms is an accurate tool to predict academic performance at any stage 

of university life, and at the same time provide information to generate strategies to improve dropout and 

academic retention indicators.

Keywords: Educational Data Mining (EDM), Academic Performance, Machine Learning, Ensemble Methods.

Resumen
Introducción: El presente artículo es producto de la investigación “Métodos de ensamble para estimar el ren-

dimiento académico de estudiantes de educación superior”, desarrollado en la Universidad Distrital Francisco 

José de Caldas en el año 2021 y se centra en la revisión de trabajos de investigación desarrollados en los 

últimos cinco años relacionados a la predicción del rendimiento académico utilizando algoritmos de ensamble.

Objetivo: La revisión de la literatura tiene como objetivo identificar los algoritmos más utilizados y las variables 

más relevantes en la predicción del rendimiento académico.

Metodología: Se realizó una revisión sistemática de la literatura en distintas bases de datos académicas 

(Science Direct, Scopus, SAGE Journals, EBSCO, ResearchGate, Google Scholar), utilizando ecuaciones de bús-

queda construidas con palabras claves.

Resultados: Se encontraron 54 artículos relacionados que cumplen con los criterios de inclusión de la revisión. 

Además, se encontraron beneficios en la aplicación de métodos de ensamble en la predicción del rendimiento 

académico. 

Conclusión: Se encontró que las variables más influyentes en el rendimiento académico corresponden al factor 

académico, el algoritmo utilizado que presenta mejores resultados es Random Forest, además de que fue el 

más utilizado, y que el uso de estos algoritmos es una herramienta precisa para predecir el rendimiento acadé-

mico en cualquier etapa de la vida universitaria, y a su vez brindar la información para generar estrategias que 

permitan mejorar los indicadores de deserción y retención académica.

Palabras clave: Educational Data Mining (EDM), Rendimiento académico, Machine Learning, Métodos de 

ensamble.
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Resumo
Introdução: Este artigo é produto da pesquisa “Métodos de montagem para estimar o desempenho acadêmico 

de estudantes do ensino superior”, desenvolvida na Universidade Distrital Francisco José de Caldas no ano 

de 2021 e tem como foco a revisão de trabalhos de pesquisa desenvolvidos nos últimos cinco anos. anos 

relacionados à previsão de desempenho acadêmico usando algoritmos de conjunto.

Objetivo: A revisão de literatura visa identificar os algoritmos mais utilizados e as variáveis   mais relevantes na 

previsão do desempenho acadêmico.

Metodologia: Foi realizada revisão sistemática da literatura em diferentes bases acadêmicas (Science Direct, 

Scopus, SAGE Journals, EBSCO, ResearchGate, Google Scholar), utilizando equações de busca construídas 

com palavras-chave.

Resultados: foram encontrados 54 artigos relacionados que atendem aos critérios de inclusão da revisão. 

Além disso, foram encontrados benefícios na aplicação de métodos de ensemble na previsão do desempenho 

acadêmico.

Conclusão: Constatou-se que as variáveis   mais influentes no desempenho acadêmico correspondem ao fator 

acadêmico, o algoritmo utilizado que apresenta os melhores resultados é o Random Forest, além de ser o 

mais utilizado, e que o uso desses algoritmos é uma ferramenta precisa prever o desempenho acadêmico em 

qualquer fase da vida universitária e, por sua vez, fornecer informações para gerar estratégias para melhorar 

os indicadores de evasão e retenção acadêmica.

Palavras-chave: Mineração de Dados Educacionais (EDM), Desempenho Acadêmico, Aprendizado de Máquina, 

Métodos de Montagem.

1. INTRODUCTION
The university educational field faces the constant challenge of maintaining and im-
proving academic quality day by day, since today’s society requires it. Due to this, 
strategies are proposed in search of being able to guarantee adequate quality stan-
dards, which result in improving the performance and retention of students [1].

It is a difficult task to be able to define the appropriate actions and decisions that 
maximize student performance since there are several influencing factors [1] such as: 
social, economic, historical, individual, macroeconomic, state educational policy and 
institutional factors, among others [2]; it is a complex and multidimensional theoretical 
construct. For this reason, academic performance has been represented in different 
ways in the various studies that have addressed the subject, and it also requires an 
integration of the different techniques and methodologies in order to predict it [3], [4].

Low academic performance is often associated with a high dropout rate [5]. In 
most middle and higher educational institutions around the world, failure and drop-
out rates show very high values when compared to the results of basic education 
[6]–[8]. This has become a problem of growing interest not only for higher education 
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institutions, but also for educational authorities due to its socio-economic conse-
quences [9], [10].

Dropout can be defined as an individual event of interruption or disassociation 
from the institutional academic trajectory as a result of one or several processes at 
the personal, institutional or social level [9]. In order to reduce the dropout rate, it is 
necessary to have a mechanism that allows students to determine possible academic 
risk situations [11], [12].

That is why, in this document, the cases of application of data mining and as-
sembly methods in education are compiled and presented. It is important to mention 
that the objective is to provide a systematic review that guarantees transparency in 
the methodology; gray literature (such as government reports and policy documents) 
is also omitted since it can bias perspectives [13].

To contextualize the topics addressed in the literature review, the following con-
cepts are addressed: analytics in education, machine learning and ensemble methods.

1.1 Analytics in education
The main objective of educational systems is to provide knowledge, tools and skills 
for students. The way in which educational systems effectively meet this objective 
is a determining factor for social and economic progress [14]. This is why the need 
arises to have management systems that help to make the right decisions, since this 
not only affects academic departments and internal issues, but also activities such 
as accreditations [6].

Due to the great advances within ICT, it is common for educational institutions 
to have enough information about their students that can be easily accessed. It is cer-
tain that potentially useful information can be found in these data [7] that can benefit 
the teaching and learning processes of various educational institutions. This type of 
analysis is performed through data mining techniques [15] which have the purpose 
of extracting significant knowledge from the data [16]. The application of data mining 
methods to educational data is known as Educational Data Mining (EDM) [17], [18], 
which, together with Machine Learning, are responsible for the collection, analysis and 
dissemination of educational data with the purpose of understanding and optimizing 
related aspects of the teaching-learning process [19].

In the same way, there are several ways to measure the efficiency of the educa-
tional process, as is the case of the retention phenomenon, defined as the difference 
between ‘the number of students who enter the first semester’ and ‘the number of 
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graduates’ per year [20] and the academic performance, defined as the primary indi-
cator of student success or failure.

It is here where areas such as data mining and engineering add value by pro-
posing solutions to multiple aspects of an academic-administrative nature [3], pro-
viding tools that generate timely analyses to establish adequate strategies to improve 
academic performance and reduce student desertion.

1.2 Machine learning and ensemble methods
Machine learning, also called automatic learning, is a discipline of artificial intelligence 
whose objective is to develop techniques so that machines can learn automatically 
through experience, which is obtained through the analysis of millions of data and the 
identification of their behavior patterns [21]. This can be divided into two large groups: 
classic and contemporary, as shown in Figure 1.
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Figure 1. Overview of machine learning. 
Source: Own work.

In classical learning there is supervised learning, which takes a set of training 
data and the algorithm tries to build patterns from these to predict an output value [22]. 
These supervised learning algorithms are frequently used for regression (prediction 
of numerical variables) and regression (prediction of categorical variables) tasks [22], 
[23]. On the other hand, we have unsupervised learning, in which a set of training data 
is taken, and the algorithm itself identifies characteristics, regularities, correlations or 
categories of the set, but does not predict a response value [21]–[23].
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Within contemporary learning are neural networks, which simulate the biological 
central nervous system to predict a response based on a reward system [22], these are 
very efficient to solve regression and classification problems [24]. On the other hand, 
there are the so-called aggregation or assembly methods, which consist of building 
several predictors, from the same set of data, and combining them in some way to 
obtain a more stable predictor with higher performance than from other predictors, 
had they worked alone [25]–[27]. The main techniques that are developed within the 
assembly methods in Machine Learning are Bagging, Boosting and Stacking.

Bagging or Bootstrap aggregation [28]–[30] is a method that aggregates or 
assembles independent predictions and forms a final prediction [31]. This is effective 
even with unstable learning algorithms [32]. This algorithm partitions the dataset into 
‘m’ random data samples of size ‘n’ [33] and almost always runs the same model for 
each subsample. The independence of each algorithm used in parallel is exploited, 
and the final prediction of the combination is obtained by voting or the average of all 
responses [25], [31].

Boosting is a method used to solve classification and regression tasks [34]. This 
algorithm takes a set of data and executes sequential models in a cascade fashion. 
Each model starts from the result of a previous model [25], [31], [35], and each one 
learns to correct the prediction errors of the previous model [36]. The final prediction is 
produced by combining the predictions of the previous models by means of voting or 
weighted sum, in this way a more efficient final prediction is obtained, which reduces 
the variance and also the bias [25], [31].

Stacking is an algorithm that has the particularity of combining the predictions 
from different learning algorithms, and the final model results from the combination 
of the predictions of the simple models, called base-learners [22], [33], [37]. To reduce 
the risk of overfitting, simple models such as meta-learners [38] are usually chosen. 
Training a stacking model is computationally expensive as it is done through Cross 
Validation [36].

2. METHODOLOGY
A systematic review of the literature must guarantee the integrity and quality of the 
available information related to the field of study. The methodology used for the re-
view is described below:
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2.1 Information sources
The search was carried out in six academic databases (Science Direct, Scopus, SAGE 
Journals, EBSCO, ResearchGate, Google Scholar) during the 2016-2021 period, with 
the last review date in July. The search equations were formed using combinations 
of terms such as: Academic Performance, Machine Learning, Ensemble Techniques, 
Ensemble Methods, Predicting, Bagging, Boosting, Stacking, Educational Data Mining.

145 articles were found, of which works related to: prediction of academic 
desertion, studies that are a bibliographic review of other works, studies applied in 
primary or secondary education, and studies that do not apply ensemble algorithms 
in the prediction of academic performance were excluded. As a result, 54 papers were 
obtained for review.

2.2 Objectives of the literature review
It is intended to identify the methods, tools, variables and findings in the application 
of Machine Learning, specifically those authors who use assembly methods in the 
prediction of academic performance. According to this objective, the following ques-
tions are raised: What are the variables that researchers take into account for the 
case studies? And of these, which ones have an impact on the prediction of student 
desertion? What is the application efficiency of ensemble methods for prediction in 
this field? What tools are the most used in investigations?

3. RESULTS
Based on the review of the literature, this section provides the results obtained to an-
swer the research questions.

3.1 Factors that influence academic performance
Multiple authors have developed studies to determine the most influential variables 
in academic performance, and for this purpose they have applied different statistical 
and machine learning techniques. In the works consulted following the review meth-
odology, various factors evaluated for the prediction of academic performance were 
found, which were grouped into: academic, sociodemographic, online learning, aca-
demic management, psychosocial and academic environment.
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3.2 Academic factor
It refers to the characteristics related to the learning and teaching process of students 
in the educational field. Variables that allow the institution to qualify the students’ 
learning level are found in this group, such as: cumulative average grades, subject 
grades, among others. Variables that measure the student’s academic performance 
before entering university are: scores on state tests (taken in some countries), ad-
mission scores, high school grade point averages, among others. Table 1 shows the 
variables found that belong to the factor and the authors who used some of these for 
the development of their models.

Table 1. Variables academic factor and related authors. 

Factor variables Authors who consider variables  
of this factor

Admission score, Course scores, Course submitted, Courses 
scores, Cumulative GPA, English level, GPA of the course, 
High School GPA, High School location, Math level, Semester 
scores, State test score, Study time

[22], [23], [26], [28]–[31], [37]–[70]

Source: Own work.

3.3 Sociodemographic factor
It refers to the general characteristics and size of a population group. Among the 
variables included in this factor are aspects inherent to the student such as: age, 
gender, nationality, ethnicity, marital status, among others; and variables related to 
socioeconomic conditions such as: economic dependence, economic status of the 
parents, type of housing, level of education achieved by the parents, employment sta-
tus, among others. Table 2 shows the variables found that belong to the factor and the 
authors who used some of these for the development of their models.

Table 2. Sociodemographic factor variables and related authors. 

Factor variables Authors who consider 
variables of this factor

Access to internet, Age, Economic dependence, Employment status, 
Ethnicity, Family Highest Education Level, Family income, Family size, 
Gender, Health status, House to university distance, Lives in town or 
village, Marital Status, Nationality, Parents job, Parents occupation, 
Parents qualification, Parent status, Total income

[17], [22], [23], [26], [28]–[31], [35], [38], 
[41]–[43], [46], [48]–[55], [57]–[60], 

[63]–[65], [67], [68], [70]–[77]

Source: Own work.
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3.4 E-learning factor
The E-learning factor refers to the way in which the student acquires knowledge of a 
subject through digital pedagogical tools. This factor includes variables related to the 
interaction of students with the virtual educational platforms of the universities, such 
as: access to the platform, resources visited, Moodle questionnaires, among others. 
Table 3 shows the variables found that belong to the factor and the authors who used 
some of these for the development of their models.

Table 3. E-learning factor variables and related authors.

Factor variables Authors who consider variables  
of this factor

Computational Knowledge, Content Read, Discussion groups, 
Forum viewed, Internet time, Internet usage activity, Moodle 
forum, Moodle quiz, Moodle task, Moodle time, Raises hand on 
class, Resource viewed, Visited resources

[28], [35], [45], [47], [49], [50], [55], [57], [59], 
[65], [70], [72]–[79]

Source: Own work.

3.5 Academic management factor
The academic management factor refers to institutional educational and pedagogical 
processes in order to respond to educational needs. This factor includes variables 
related to the evolution of the student during their university stage, such as: schol-
arships, credits taken, study plan, student status, among others. Table 4 shows the 
variables found that belong to the factor and the authors who used some of these for 
the development of their models.

Table 4. Academic management factor variables and related authors. 

Factor variables Authors who consider variables  
of this factor

Academic year, Admission category, Career, Course name, 
Credits in current term, Credits taken, Educational stage, En-
rolment average grade, Enrolment stage, Failures, Program, 
Scholarship, Semester, Student Entry Age, Student status, 
Subject category, Topic, Transfer status, Type of course, Year 
of entry into university

[22], [23], [26], [28]–[30], [35], [38]–[40], [42]–[44], 
[46], [49]–[52], [55], [57], [58], [60], [61], [63]–[68], 

[70]–[72], [74]–[77], [79], [80]

Source: Own work.
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3.6 Psychosocial factor
The psychosocial factor refers to human behavior and its insertion in society. This 
factor takes into account the variables that measure certain personality traits of stu-
dents and may be linked to academic performance, such as: discipline, personality, 
attendance, habits, social integration, among others. Table 5 shows the variables 
found that belong to the factor and the authors who used some of these for the de-
velopment of their models.

Table 5. Psychosocial factor variables and related authors. 

Factor variables Authors who consider variables 
of this factor

Absence rate, Adaptation, Aptitude, Attendance, Consumption of 
alcohol, Consumption of tobacco, Discipline, Focus in the class, Im-
pact of friend circle, Institutional commitment, Interaction, Interest 
towards courses, Number of friends, Persistence, Personality, Social 
integration, Study method

[23], [28], [30], [35], [42]–[45], [48]–[55], 
[57]–[59], [63], [70], [72]–[79], [81]

Source: Own work.

3.7 Academic environment factor
The academic environment factor refers to the facilities, contexts and cultures in 
which students develop their knowledge acquisition process. Within this factor, as-
pects of the functioning of the institution where the student develops are taken into 
account, such as: study campus, professor’s rank, subjects, study group, among oth-
ers. Table 6 shows the variables found that belong to the factor and the authors who 
used some of these for the development of their models.

Table 6. Factor variables of academic environment and related authors.

Factor variables Authors who consider variables  
of this factor

Assignments, Campus of study, Class, College/university 
integration, Course size, Extra paid classes, Extracurricular 
activities, Rank teacher, School’s environment, Students in the 
course, Subjects, University support

[28], [30], [35], [42], [43], [48]–[50], [53]–[56], 
[58], [59], [64], [68], [81]

Source: Own work.
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3.8 Ensemble methods used for predicting academic 
performance
Below is a detailed description of each of the works carried out during the last six 
years, consulted according to the aforementioned review methodology. The works 
are divided according to their year of publication; one group covers the period 2016 
- 2018 while the other covers the period 2019 - 2021. In each one, the author(s), algo-
rithms used, sample size, model and associated accuracy, and software used for data 
analysis and model development are shown.

The convention for the algorithms is shown below. ABO: AdaBoost, ANN: 
Artificial Neural Network, BA: Bagging, BAT: Bagged Trees, BN: Bayesian Network, 
BNB: Bernoulli Naive Bayes, BO: Boosting, CART: Classification and Regression Tree, 
CDB: Bayesian Discriminant Classifier, CL: Clustering , DISC: Discriminant Analysis, DT: 
Decision Tree, EPP: Ensemble-based Progressive Prediction, EXT: Extra Trees, GBT: 
Gradient Boosting, GLM: Generalized Linear Model, KNN: K Nearest Neighbors, LGBO: 
LogitBoost, LIR: Linear Regression, LL: Lazy Learning; LOR: Logistic Regression, MLP: 
Multilayer Perceptron, MR: Multiple Regression, NB: Naive Bayes, NN: Neural Network, 
PMLP: Personalized Multi-Linear Regression, PNN: Probabilistic Neural Network, PWC: 
Pairwise Coupling, RF: Random Forest, RT : Random Tree, RTF: Rotation Forest, SGD: 
Stochastic Gradient Descent, SMO: Sequential Minimal Optimization, STK: Stacking, 
SVM: Support Vector Machine, SVR: Support Vector Regression, VOT: Voting, XGB: 
XGBoost.

3.8.1 Period 2016 – 2018
19 of the 54 articles taken into account in the review fall within the period 2016-2018; 
these are summarized in Table 7.

Table 7. Results period 2016 - 2018. 

Year Author Algorithms used Sample size Model Accuracy Software 
used

2016 [79] ANN, DT, NB, BA, BO, ABO, 
RF 500 BO, Accuracy 79.1% WEKA

2016 [64] SGD, KNN, PMLR, RF 33000 RF, RMSE 0.7381 Python

2016 [48] KNN, GLM, NN, BN, RF 15519 RF, Accuracy 85.87% -

2017 [17] DT, ANN, KNN, NB, RF 210 NB, Accuracy 89.65% RapidMiner

2017 [61] DT, NB, KNN, SVM, RF 69 SVM, Accuracy 100% R

(continúa)
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Year Author Algorithms used Sample size Model Accuracy Software 
used

2017 [66] EPP 367 EPP, Accuracy 75% -

2018 [77] SVM, LOR, RF, VOT 500 VOT, Accuracy 80.9% -

2018 [76] ID3, NB, KNN, SVM, BA, BO, 
VOT 500 VOT, Accuracy 89% WEKA

2018 [62] NB, KNN, DT, BAG, VOT, STK 1000 BAT, Accuracy 86.47% WEKA

2018 [60] DT, SVM, NB, RF, BAT, ABO 2495 RF, Accuracy 96.1% RapidMiner

2018 [51] J48, PART, BN, RF 300 RF, Accuracy 99% WEKA

2018 [57] C4.5, REPTree, KNN, NB, 
SMO, M5, ABO, RTF, LGBO 3882 Ensemble REPTree - 

M5 Rules, MAE 0.55 Java

2018 [47] KNN, DT, RF 124 RF, Accuracy 71,57% WEKA

2018 [35] NB, ANN, DT, KNN, BA, BO, 
ABO, RF 480 ABO using ANN, Accu-

racy 78.6% -

2018 [28] ANN, SVM, DT, STK 141 STK, Precision 79.62% SPSS, Rapid-
Miner

2018 [43] DT, LOR, SVM, RF, EXT 1077 RF, Accuracy 83% Python

2018 [67] SVM, BO 1304 BO, Accuracy 82.87% -

2018 [59] NB, LOR, NN, LMT, RF, STK, 
XGB 31029 STK, AUC 0.939 R

2018 [42] J48, RF, RT, STK 28991 STK, Accuracy 96.11% -

Source: Own work.

3.8.2 Period 2019 – 2021
35 of the 54 articles taken into account in the review fall within the period 2019-
2021; these are summarized in Table 8. The referential research was carried out until 
December 2021.

Table 8. Results period 2019 - 2021. 

Year Author Algorithms used Sample size Model Accuracy Software 
used

2019 [71] NB, DT, KNN, DISC, BO, ABO 500 ABO using KNN, Accu-
racy 86.01% -

2019 [74] NB, C5.0, CART, KNN, SGD, 
RF 480 RF, Accuracy 0.7959 R

2019 [69] NN, GBT, STK 500 STK, MAE 3.0856 -

2019 [55] NB, DT, SVM, NN, CL, GBT, RF 588 Ensemble Model, 
Accuracy 98.5% RapidMiner

2019 [26] LOR, RF 11637 RF, Precision 84% Python

(viene)

(continúa)
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Year Author Algorithms used Sample size Model Accuracy Software 
used

2019 [31] CART, CDB, GLM, LIR, SVM, 
RF, VOT 2029 GLM, AUROC 0.704 SQL, R

2019 [39] DT, NB, LOR, MLP, NN, RF, 
ABO 1841 NN, Accuracy 51.9% KNIME

2019 [78] SVM, KNN, DT, BA, BO, RF 500 RF, Accuracy 0.89 -

2019 [81]

PART, FURIA, NNge, OneR, 
NB, MLP, SMO, LL, KNN, J48, 
LMT, REPTree, CART, RT, DT, 
RF, BO, BA, VOT, ABO

400 ABO using NB - J48, 
Accuracy 0.985 -

2019 [22] ANN, GBT, XGB, STK 9118 STK, Accuracy 0.94 Excel, R, 
Python

2019 [23] J48, KNN, LOR, MLP, RF 12698 RF, Accuracy 69.35% WEKA

2019 [73] ANN, LOR, NB, SVM, DT, RF, 
BA. VOT, XGB 480 RF, Accuracy 77.08% -

2019 [52] J48, NNge, MLP, ABO 1044 ABO using J48, Accura-
cy 95.78% -

2019 [50] DT, ANN, SVM, RF, BA, BO, 
ABO, STK, VOT 4413 VOT, Accuracy 75.56% Python, 

MySQL

2019 [40] PNN, NB, LOR, DT, RF, BAT 1841 LOR, Accuracy 89.15% KNIME, 
MATLAB

2020 [72] NB, DT, KNN, DISC, PWC, 
ABO, BA, BO 500 ABO, Accuracy 86% MATLAB

2020 [38] SVM, LOR, DT, BNB, RF, ABO, 
GBT, XGB 486 STK, AUROC 0.9138 Python

2020 [41] J48, NB, KNN, BO - NB, Accuracy 97.15% GAMS

2020 [29] DT, NB, LOR, MLP, NN, BA 129 BA using LOR, Accura-
cy 86.82% WEKA

2020 [37] LIR, DT, KNN, RF, BA, STK 2200 STK using LIR - DT, 
MAE 7.5989 WEKA

2020 [75] RF, GBT 480 RF, Accuracy 81% Python

2020 [56] DT, KNN, BA, BO, RF, STK 121 STK, Accuracy 0.78 -

2020 [53] SVM, RBF, LOR, NB, KNN, NN, 
RF, BA 601 BA using LOR, Accura-

cy 93.1% R, MATLAB

2020 [54] NB, ANN, DT, LOR, BA, LGBO, 
ABO, RF 887 RF, Accuracy 96% WEKA

2020 [63] NB, MLP, KNN, DT, BA, RTF 319 Ensemble RTF - MLP, 
Accuracy 91.70% MATLAB

2020 [49] NN, RF, GBT 450 NN, Accuracy 0.782 RapidMiner

2020 [80] SVM, MLP, KNN NB, LOR, RF 601
Ensemble using RF - 
KNN - SVM, Accuracy 
0.35

R

2021 [46] SVM, DT, C5.0, NN, BO, XGB, 
RF 2761 BO using C5.0, Accura-

cy 0.9312 R

2021 [65] DT, LOR, NN, SVM, KNN, RF, 
GBT 1708 DT, Accuracy 0.942 -

(viene)

(continúa)



14 A review on the prediction of students’ academic performance using ensemble methods

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 18, no. 2 / may-august 2022 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

Year Author Algorithms used Sample size Model Accuracy Software 
used

2021 [58] NB, MLP, DT, J48, BA, ABO 480 ABO using MLP, Accu-
racy 80.33% WEKA

2021 [70] DT, NB, MLP, BA, BO, VOT 480 BA using DT, Accuracy 
91.39% -

2021 [68] ANN, KNN, CL, NB, SVM, LOR, 
DT, VOT 1491 VOT, Accuracy 83% WEKA

2021 [30] MLP, BA, BO 649 BA, Accuracy 88% WEKA

2021 [44] NB, DT, LOR, RF 11312 RF, Accuracy 97% Python

2021 [45] J48, REPTree, JRip, Nnge, 
PART, VOT 57 VOT, Accuracy 87.47% Excel, WEKA

Source: Own work.

4. DISCUSSION AND CONCLUSIONS
Below is a brief discussion about the main aspects found in the literature review.

4.1 As for the factors
As shown in Figure 2, the most influential variables in academic performance are 
those related to academic, academic management and sociodemographic factors, 
since the authors used them to develop their models 43, 43 and 42 times, respective-
ly. The most used variables within these factors were cumulative grade point average, 
gender, course scores, semester, and age. We found 31 authors who used psychoso-
cial factor variables for the development of their models, among which assistance and 
satisfaction stand out. Finally, it can be seen that the authors used variables of online 
learning and academic environment factors in 21 and 17 articles, respectively, finding 
that the most used variables within these factors were activity in discussion groups, 
resources visited, hands raised in class, extracurricular activities and subjects.

(viene)
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Figure 2. Articles related to each factor. 
Source: Own work.

It is worth mentioning some documents that have been cited in different works 
that support the variables grouped in the previous factors. Such is the case of Landa 
[82], who indicates that the most influential variables within his model are related to 
the academic environment factor; highlighting pedagogy, class schedules and the re-
lationship between the student and the teacher. In the study of Kamal [55], it is evident 
that there are variables that positively affect performance, such as: the percentage 
of the appropriate course, high test scores and the location of residence near the 
university; and others that negatively affect you, such as: alcohol and/or tobacco use, 
health issues and family difficulties.

Regarding the academic factor, Asif [17] shows that it is possible to predict the 
graduation performance in a four-year program from variables related to the school 
and with the grades of the first and second year of university. Miguéis [60] shows that 
the most influential variable in their study for predicting academic performance was 
the average enrollment grade. Hussain [51] applies various variable selection tech-
niques, and these conclude that the grades obtained and the percentage achieved in 
the class are the most relevant variables in student performance. Lauria [59] seeks to 
predict academic performance using different datasets, and concludes that models 
that include academic variables, especially course grades, present better results in 
their evaluation metrics. Jayaprakash [54] classifies the variables according to their 
importance, stating that the grades obtained in the courses are the most relevant 
within his entire data set.



16 A review on the prediction of students’ academic performance using ensemble methods

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 18, no. 2 / may-august 2022 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

Regarding the academic management factor, Adekitan [39] applies statistical 
techniques to determine the relationship between academic variables of admission to 
exams and academic performance in their first year, which results in a weak relationship 
between these types of variables. The study concludes that admission requirements 
are vital to admit students with a variety of knowledge and unique qualities, since 
performance cannot be predicted solely with variables of the academic management 
factor. On the other hand, Bucos [43] tries to predict the academic performance of 
students in different weeks of the object-oriented programming course, and through 
the statistical test of chi square affirms that there is a relationship between some 
psychosocial (attendance), academic management (credits earned the last year) and 
academic variables (note of the cuts). Orihuela [26], in his thesis identifies that the 
most influential variables are related to academic and academic management fac-
tors, among which are the teachers, the semester, the student’s condition, the year 
and course credits. Hassan [50]  obtains the best results by including online learning, 
academic and academic management variables, highlighting the importance of the 
courses viewed variable.

In relation to the sociodemographic factor, Yamao [67] seeks to predict the per-
formance of students at the end of their first year of university and, through statistical 
techniques, manages to determine that the most influential variables in performance 
are gender, age, type of income and distance from their home to the study center. On 
the other hand, Brohi [74] shows that the most influential variables of the sociode-
mographic factor are those related to the relative responsible for the student and the 
nationality. Jayaprakash [54] classifies the variables according to their importance, 
and finds that the most relevant variables related to this factor are parental status, 
gender, family size and parental education. Jawthari [75] evaluates the importance of 
the variables, and determines that the most influential and related to this factor are 
nationality and gender.

Regarding the psychosocial factor, Rahman [35] finds that these variables 
improve the performance of predictive models, especially the variable related to 
attendance (which is stated by Kostokopoulos [57] in his study, in which there is a 
progressive addition of variables to the training data to determine the level of improve-
ment in the accuracy of their models), and indicates that the most relevant variables 
are attendance at face-to-face activities and delivery of written tasks. Brohi [74] and 
Jawthari [75] also show that the most influential variable in academic performance 
within the psychosocial factor is the one related to attendance.

Regarding the online learning factor, Brohi [74] states that including more vari-
ables does not mean better results in the models, since the accuracy achieved with 11 
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variables is higher than the models that add 10 or 12 variables. In addition, it indicates 
that the online learning variables that are related to the resources visited and the hands 
raised in class are the most influential in the performance of the students. Amrieh [79] 
finds that the psychosocial and online learning variables, especially resources visited, 
are the most decisive in their predictive model, since it manages to increase the accu-
racy by almost six percent, which is also concluded by Adejo [28], since it shows that 
including online learning variables and resources visited in the training data of their 
models improves their performance. Campo [47] demonstrates the usefulness of data 
mining in the educational field, since it manages to predict the final grade of the course 
with the activity in Moodle and the grades achieved in the intermediate controls. In 
addition, he highlights the importance of other variables, such as the average number 
of hours of study and support from the university. Kumari [76] says in his work that the 
rise in the use of technology in education makes it necessary to take into account the 
variables of online learning, and shows that these variables help to classify students in 
a better way. Trakunphutthirak [65] states that the semester and the use of the internet 
significantly influence performance.

4.2 As for the algorithms
Machine learning algorithms have turned out to be useful and accurate in predicting 
academic performance, most authors share the idea that ensemble algorithms pres-
ent better results than supervised and unsupervised learning algorithms and neural 
networks if applied in isolation. This can be evidenced in the “model precision” col-
umn of Tables 7 and 8, where the models with the best performance developed by 
the authors are shown; in 46 of 54 articles the best result was obtained by a model 
developed with assembly algorithms. Such is the case of Almasri [81], who develops 
algorithms based on rules, Bayes theorum, functions, lazy learning and assembly, and 
it is the latter that obtains the best results in terms of the evaluation metrics estab-
lished in the work.
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Figure 3. Articles related to assembly algorithms. 
Source: Own work.

Figure 3 shows that ensemble algorithms have been widely used to predict 
academic performance, with Random Forest being the most popular among the 
works consulted, followed by Bagging and Boosting. However, more recent algorithms 
are being applied, as is the case of Kostopoulos [57], which develops the so-called 
Rotation Forest and LogitBoost, obtaining these two better results than the classic 
algorithms and the other applied ensemble algorithms. Sakri [63] also uses Rotation 
Forest for the development of models, and obtains the highest accuracy within the 
algorithms applied in isolation. On the other hand, Jayaprakash [54] uses LogitBoost, 
with which it obtains the highest accuracy within the algorithms developed for pre-
dictions. Ajibade [71] also proposes a model which he calls ADDE, which is based on a 
combination of the AdaBoost M2 algorithm with an optimization metaheuristic called 
differential evolution.

4.3 As for the approach
The prediction of academic performance can be carried out at different stages of the 
students’ university life. For example, Yamao [67] aims to predict the performance of 
students at the end of their first year of university, unlike Asif [17], who seeks to predict 
the academic performance of students at the end of a four-year university program. 
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Some of the approaches the authors took in developing their predictive models are 
briefly described below.

Kostopoulos [57] develops a model that seeks to predict the academic perfor-
mance of a student in the “introduction to computer science” module. Bucos [43] seeks 
to predict the performance of students in the course “Object Oriented Programming”, 
a subject taught in the second year of university, and Campo [47] seeks to predict 
the performance of students in the subject “automata theory and formal languages” 
through the application of intermediate controls. Pandey [62] and Injadat [53] also 
develop predictions at different stages in a course, usually in academic cuts, and these 
are called multilevel predictions.

Sweeney [64] develops a system that aims to predict the grades of the stu-
dents in the courses they enroll in the following semester, something similar to what 
Adekitan [39] proposes, which makes predictions of the academic performance of the 
students in the 13 courses of the basic study program of the university.

Ochoa [61] predicts, through a machine learning model, the academic perfor-
mance of students at the end of the semester, as well as Adekitan [39], Candia [23] and 
Zeineddine [68], since they develop their models seeking to predict the academic per-
formance of newly admitted students at the end of their first year of college. Miguéis 
[60] seeks to predict the final general average of the students through the information 
of their first-year university grades.

Adekitan [40] seeks to predict the academic performance and the general aver-
age of students at the end of the fifth year of university, using the information available 
from the first three years. Trakunphutthirak [65] evaluates different characteristics and 
their effect on academic performance in the first ten weeks of the semester.

4.4 Conclusions
After the detailed review and referential analysis of the algorithms developed, it is 
possible to affirm that the ensemble methods are a more effective tool than the clas-
sical algorithms alone for the prediction of academic performance.

The factors with the greatest impact on the prediction of academic performance, 
according to the review of each of the works, are related to: academic, academic man-
agement and sociodemographic factors; however, the authors who included psycho-
social type variables presented more precise results in their evaluation metrics. In 
addition, the application of variable selection techniques allows the models to obtain 
better performance, since information that can generate noise in the training process 
is omitted.
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The most common approach, in the models developed by the authors, seeks 
to predict academic performance in first-year university students, since several agree 
that the early identification of students at possible risk of falling into low academic 
performance allows teachers of educational institutions to design strategies to miti-
gate this problem.

Currently, most educational institutions do not take full advantage of digital 
resources, such as learning management platforms, as these can become automated 
student data acquisition systems. This can translate into data with less bias and fewer 
resources in the process of cleaning and conditioning the information. The data that 
can be obtained from these platforms is related to variables such as access and du-
ration in e-learning systems, activities in discussion forums, resources visited, virtual 
exam notes, among others.

It was evidenced that only a few studies proposed corrective solutions to pro-
vide timely feedback to students and educators to address situations of poor ac-
ademic performance; they were limited to defining the impact variables, predicting 
performance and calculating the effectiveness of what was proposed.
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