
In
ge

ni
er

ía
 S

ol
id

ar
ia

Artículo de investigación. https://doi.org/10.16925/2357-6014.2019.02.02
1

2

3

4

Escuela Colombiana de Ingeniería Julio Garavito

ORCID: https://orcid.org/0000-0003-4599-0450

Escuela Colombiana de Ingeniería Julio Garavito

ORCID: https://orcid.org/0000-0001-6255-9828

Escuela Colombiana de Ingeniería Julio Garavito

ORCID: https://orcid.org/0000-0001-7244-2631

Email: daniel.diaz@escuelaing.edu.co

Armada Nacional

ORCID: https://orcid.org/0000-0002-7038-0710

Using Reverse Engineering
to Face Malware

Utilizando la ingeniería inversa para enfrentar Malware

Utilizando a engenharia reversa para enfrentar malware

Carlos Andrés Sánchez Venegas1

Camilo Aguado Bedoya2

Daniel Orlando Díaz López3

Juan Carlos Camilo García Ruiz4

Received: November 15th, 2018
Accepted: February 20th, 2019

Available: May 21th, 2019

How to cite this article:
C. A. Sánchez-Venegas, C. Aguado-Bedoya, D. O. Díaz-López, J. C. García-Ruiz, “Using

Reverse Engineering to Face Malware”, Revista Ingeniería Solidaria, vol. 15, n.° 2, 2019.
DOI: https://doi.org/10.16925/2357-6014.2019.02.02

https://orcid.org/0000-0001-7514-7961
https://orcid.org/0000-0001-7514-7961
https://orcid.org/0000-0001-7514-7961
https://orcid.org/0000-0001-7514-7961

2 Using Reverse Engineering to Face Malware

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

Abstract
This paper is a product of the research Project “Cyber Security Architecture for Incident Management” develo-

ped in the Colombian School of Engineering Julio Garavito in the year 2018.

Introduction: Reverse engineering involves deconstructing and extracting knowledge about objects. The use of

reverse engineering in malware analysis is extremely useful in understanding the functionalities and purposes

of a suspicious sample.

Methods: This paper makes use of Radare which is one of the most popular open source tools for reverse

engineering, with the aim of dealing with malware.

Results: A use case related to hacking of anti-sandbox malware is presented, in such a way that it is possible

to analyze the behavior of the sample using a sandbox. Additionally, another use case is presented, where an

in-depth analysis of a malicious Android application aimed to the audience of a popular event (FIFA World

Cup 2018) is developed, making it possible to demonstrate the relevance of reverse engineering techniques in

end-user protection strategies.

Conclusions: This paper shows how the results of a reverse engineering process can be integrated with Yara

rules, allowing for the detection of malware on the fly, and it also shows an alternative to automatically gene-

rating Yara rules through the yarGen generator.

Originality: Use of Open Source reversing solutions by Colombian Law Enforcement Agencies has not been

discussed previously, making this paper a notable element toward the modernization of the military forces.

Limitation: Different approaches and perspectives about the limitations in the use of reverse engineering by

Law Enforcement Agencies are also shared.

Keywords: Reverse engineering, Radare, Sandboxing, Yara rules, Malware analysis.

Resumen
Este artículo es producto del proyecto de investigación “Cyber Security Architecture for Incident Management”

desarrollado en la Escuela Colombiana de Ingeniería Julio Garavito en el año 2018.

Introducción: La ingeniería inversa permite deconstruir y extraer conocimiento de objetos. El uso de la inge-

niería inversa en el análisis de malware es extremadamente útil para comprender las funcionalidades y los

propósitos de una muestra sospechosa.

Métodos: Este artículo utiliza Radare, la cual es una de las herramientas de código abierto más populares para

ingeniería inversa con el objetivo de hacer frente a las amenazas de malware.

Resultados: Se presenta un caso de uso relacionado al análisis de malware anti-sandbox, de forma que sea

posible analizar el comportamiento de la muestra utilizando una sandbox. Además, se presenta otro caso de

uso en el que se desarrolla un análisis en profundidad de una aplicación maliciosa de Android dirigida a la

audiencia de un evento popular (Copa Mundial de la FIFA 2018), que permite demostrar la relevancia de las

técnicas de ingeniería inversa en las estrategias de protección al usuario final.

Conclusiones: Este artículo muestra cómo los resultados de un proceso de ingeniería inversa se pueden inte-

grar con reglas Yara, lo que permite detectar malware, y también muestra una alternativa para generar auto-

máticamente reglas Yara a través del generador yarGen.

Originalidad: El uso de soluciones de ingeniería inversa de código abierto por parte de las agencias de seguri-

dad del estado no ha sido discutido anteriormente, lo que hace de este artículo un elemento notable de apoyo

hacia la modernización de las fuerzas militares.

Limitación: Se comparten diferentes enfoques y perspectivas sobre las limitaciones en el uso de ingeniería

inversa por parte de las agencias de seguridad del estado.

Using Reverse Engineering to Face Malware

Carlos Sánchez Venegas, Camilo Aguado Bedoya, Daniel Díaz López, Juan Carlos García Ruiz

3Carlos Sánchez Venegas, Camilo Aguado Bedoya, Daniel Díaz López, Juan Carlos García Ruiz

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

Palabras clave: ingeniería inversa, Radare, Sandboxing, reglas Yara, análisis de Malware.receptores GPS de una
sola frecuencia, matriz de cosenos de dirección.

Resumo
Este artigo é produto do projeto de pesquisa “Cyber Security Architecture for Incident Management” desenvol-

vido na Escuela Colombiana de Ingeniería Julio Garavito em 2018.

Introdução: a engenharia reversa permite desconstruir e extrair conhecimento de objetos. O uso da engenharia

reversa na análise de malware é extremamente útil para compreender as funcionalidades e os propósitos de

uma amostra suspeita.

Métodos: para isso, utiliza-se Radare, que é uma das ferramentas de código aberto mais populares para en-

genharia reversa com o objetivo de enfrentar as ameaças de malware.

Resultados: apresenta-se um caso de uso relacionado à análise de malware anti-sandbox, de forma que seja

possível analisar o comportamento da amostra utilizando uma sandbox. Além disso, apresenta-se outro caso

de uso em que se desenvolve uma análise em profundidade de uma aplicação maliciosa de Android dirigida

à audiência de um evento popular (Copa do Mundo da FIFA 2018), que permite demonstrar a relevância das

técnicas de engenharia reversa nas estratégias de proteção do usuário final.

Conclusões: este artigo mostra como os resultados de um processo de engenharia reversa podem ser integra-

dos com regras Yara, o que permite detectar malware, e também mostra uma alternativa para gerar automati-

camente regras Yara por meio do gerador yarGen.

Originalidade: o uso de soluções de engenharia reversa de código aberto por parte das agências de segurança

do Estado não tem sido discutido anteriormente, o que torna este estudo um elemento notável de apoio à

modernização das forças militares.

Limitação: compartilham-se diferentes abordagens e perspectivas sobre as limitações no uso de engenharia

reversa por parte das agências de segurança do Estado.

Palavras-chave: engenharia reversa, Radare, Sandboxing, regras Yara, análise de malware.

1. Introduction
The purpose of this paper is to show the potential of reverse engineering when applied
to cybersecurity [1] for the detection of software with malicious or hidden functional-
ities which can affect a person or company.

Reverse engineering is the process of deconstructing something to discover
its architecture and gain knowledge from it [2]. An example to help understand this
process is to think of a large building which, after applying reverse engineering, allows
for the production of the building plans, type of concrete used in the construction
and even information related to who built it. In a software and cybersecurity context,
reverse engineering refers to the process of passing from binary code —machine
code— to a more understandable language —usually assembly code—, this process
is called disassembly.

Reverse engineering is very important in cybersecurity because it supports
the examination of samples by means of static analysis, therefore allowing for the

4 Using Reverse Engineering to Face Malware

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

extraction of Indicators of Compromise (IoC). IoCs are typically hashes, compilation
dates, import and export functions, file sections, registry keys, hostnames, IPs, emails
or even text strings existing in the code, which represent attacker traces. With reverse
engineering it is possible to detect, analyze and prevent attacks, which can be em-
powered with the help of Yara rules [3], which is a language to identify and classify
malware samples.

Reverse engineering is also useful in software development because a develop-
er could use it to reverse his own software and discover potential vulnerabilities that
had not been considered in the software development process but that an adversary
could notice when performing reverse engineering [2].

Another way to analyze files to discover if it is malware or goodware is by means
of a sandbox. Sandbox or sandboxing is the process of isolating an application and its
execution in a controlled environment —with the help of virtual machines—, so it can
be possible to inspect its behavior and actions without really affecting the computer
or the network. In this way a sandbox can make a dynamic analysis by looking at the
behavior that the file would perform when it is executed. The sandbox executes the
file in a totally controlled environment, i.e. an isolated virtual machine, and generates
a report where it indicates every movement, contact and altered files that the sample
has made. This report will later support the cybersecurity analyst in the identification
of the nature of the sample.

Every day malware becomes more sophisticated and incorporates new ways
to: avoid being discovered, break into more complex systems and even to avoid being
analyzed. In the last case, there is malware that prevents being executed in controlled
environments —sandbox— by means of complex techniques, such as validating op-
erative system variables to realize if it is being executed in a controlled environment
or checking the internet search history to realize if there is a real user controlling the
machine. Other simple techniques that can be used by the malware involve asking for
an interaction with the user generating interface dialogues that a sandbox could not
respond to and that will pause the execution. In the latter case, it is possible to again
see the potential of reverse engineering, which can be used to change the malware
code to avoid generating dialogues, once again permitting its analysis in a controlled
environment.

Throughout the development of this paper we worked with an open source
tool that is currently gaining in popularity called Radare [4] which can be compared
with commercial and expensive solutions like IDA Pro [5]. Radare is a very complete
solution which provides analysis for the majority of available architectures, and it also
includes helpful tools or plugins, e.g. a debugger. A debugger is used to find bugs

5Carlos Sánchez Venegas, Camilo Aguado Bedoya, Daniel Díaz López, Juan Carlos García Ruiz

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

or problems with some given application using features like breakpoints to stop
the execution of the program in a desired step. Radare also offers several types of
visualization —assembler, hexadecimal— [2].

This paper is composed as follows. Section 2 presents two cases of reverse
engineering. Then, Section 3 describes the existing ways to automatically generate
Yara rules. Later, Section 4 includes a discussion regarding the current use of re-
verse engineering by Law Enforcement Agencies that protect critical technological
infrastructure —essential governmental services that guarantee the state operation
or indispensable services provided to the community by a private company—. Finally,
some conclusions and future works are presented.

2. Using reverse engineering to analyze
Malware
Radare is a multi-platform open-source framework written in C that was initially de-
signed for file recovery but has evolved towards a tool for reverse engineering and
analysis of binary files. It has the support of the GitHub community which offers con-
tinual improvements for its functionalities, making it a very complete tool comparable
with payment solutions that have the same purpose. Every year the Radare congress
(r2con) is held in September in Barcelona (Spain) where the novelties around the
tool and its applications are discussed. With this tool it is possible to disassemble
—convert from machine to assembly code— and assemble software with many differ-
ent types of architecture. It has been used a lot in forensics for studying file systems
through static analysis and performing malware analysis through dynamic analysis,
using an integrated debugger.

This section describes anti-sandbox techniques (Section 2.1) and shows two
practical cases of reverse engineering using Radare (Section 2.2 and Section 2.3). In
the first case reverse engineering is applied to modify a malware sample, so it can be
analyzed by other tools such as a sandboxing tool [6][7]. In the second case, a reverse
engineering analysis is done over a mobile application using Radare and some plugins
like Androguard.

Although there are several tools that have similar functions to Radare, none of
them include as many functionalities as Radare. Some tools are focused on certain
types of binary files, like Apktool which is applicable for binaries of Android applica-
tions. Apktool can decode resources to nearly original form and rebuild them after
making some modifications. On the other hand, Radare is capable of providing the

6 Using Reverse Engineering to Face Malware

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

same functionalities provided by Apktool and also to emulate an Android environment
in order to trace the program execution and identify system events and behaviors.
Dex2jar is another common tool used for Android applications, but its main purpose is
to read specific type of Android files parsed as Dalvik Executable format (.dex / .odex)
which are compiled classes files where all code is written.

Another popular tool used to analyze binary code is OllyDbg, which is spe-
cialized in certain types of files used in Microsoft Windows platforms and offers a
great debugger functionality, however OllyDbg is outdated as its last release was in
2013. Oppositely, Radare offers debugger functions for binaries belonging to different
kinds of platforms (not only Microsoft Windows platforms), supporting even Game
Boy applications.

For the purpose of malware analysis, a tool used by many Cert (Computer
Emergency Response Teams) worldwide is PeStudio, which can be used to perform
a Malware Initial Assessment. PeStudio can discover various types of indicators and
classify items without the risk of infection for the user platform. The indicators can
be used to perform an initial classification of the malware however it is does not pro-
vided enough information to develop a deep malware analysis that include insights
regarding the application behavior, a functionality that is important in this type of anal-
ysis as will be described in subsection 2.1.

The reason for choosing Radare as the main solution when developing the
research presented in this paper was its large range of tools incorporated in one
single framework, providing similar functionalities as the ones included in the pre-
viously mentioned tools, and the inclusion of additional functions like: i) Assembler /
Disassembler, ii) Hex editor in 64bits blocks, iii) Checksum calculator (per block basis),
iv) Transparent usage of processes, disks, files, ram, v) Filesystem mounting (fat, ntfs,
ext2, among others), vi) Binary file analyzer for Windows, Linux, Mac, Java, Dalvik, vii)
Debugger (w32, Linux, Mac, iOS), viii) Binary diff tool, ix) Shellcode creation and editing
functionality and x) Multiple scripting language support.

2.1. Analyzing malware with sandbox
The goal of most malware is to be able to produce the highest impact in victims by
making as little noise as possible, so it can continue operating and infecting other
devices. Due to this behavior sandbox analysis techniques emerged, whose purpose
is to deceive the malware so it can perform its functions in a controlled and monitored
environment, thus allowing for the analysis of its behavior in the infected machine and
its subsequent characterization for future rapid identification [8][9]. Cybercriminals

7Carlos Sánchez Venegas, Camilo Aguado Bedoya, Daniel Díaz López, Juan Carlos García Ruiz

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

have started to use different anti-sandbox techniques to trick sandboxes into
believing that the file being analyzed is harmless. What follows is a list of the most
common anti-sandbox techniques [10].

2.1.1. INTERACTION WITH THE USER
This is a very common anti-sandbox technique where the execution of the malware is
not done until some actions are made by the user, such as the execution of a certain
number of mouse clicks, the closing of some pop-ups, the typing of some defined text
or the scroll over a text. Regarding this, some sandbox solutions are able to simula-
te a human behavior by moving the mouse, clicking randomly or scrolling content,
however sometimes a more complex interaction is required which cannot be simu-
lated by the sandbox. When the required interactions are not fulfilled the malware
does not execute completely and it is marked as inoffensive by the sandbox.

2.1.2. SANDBOX DETECTION
The malware can detect certain processes that are executed only by sandbox solu-
tions. When the malware detects these processes, it pauses its execution or starts
inoffensive and fake actions. Similarly, malware can search files that are common in
real user devices but not in sandboxes, such as search history files of web browsers,
and when not found, the malware infers that it is running in a monitored and con-
trolled environment.

2.1.3. DELAY OF EXECUTION AND EXECUTION AFTER RESTART
Sandboxes usually consider an execution time for a malware analysis, if at the end
of this time no suspicious activity is detected, the sample is classified as harmless.
This behavior is widely used by cybercriminals since they develop malware that only
activates after an initial sleep period. When the malware sleep period is bigger than
the sandbox execution time, the malware goes unnoticed through the sandbox. The
sandboxes at the end of a malware analysis restores the virtual machine to continue
with the analysis of a new sample. This operation is exploited by the malware creators,
so they define a malicious process that only starts after the restart of the machine
making it difficult for the sandbox to identify the malicious process.

8 Using Reverse Engineering to Face Malware

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

The previously mentioned methods are commonly used by cybercriminals to
deceive sandboxes and go unnoticed, however there may be more methods that have
not yet been discovered because of their complexity.

2.2. Case 1: Using Radare to enable malware analysis in
a sandbox
Radare is a great tool that allows you to detect the techniques presented in Section
2.1, since by reverse engineering a malware sample it becomes possible to detect
these techniques with relative ease. This section will focus on the use of Radare to
handle the technique described in section 2.1.1 (Interaction with the user). For this
purpose, an application was created which displays a pop-up with a message asking
the user to click to continue the execution, simulating what a malware would do to
cheat a sandbox [11].

Figure 1. Example of pop-up window
Source: own work

Figure 2. Simulation of infection after user interaction
Source: own work

Using Radare the malware sample will be modified so that when executing it
does not require user interaction and so can be analyzed by the sandbox solution.

9Carlos Sánchez Venegas, Camilo Aguado Bedoya, Daniel Díaz López, Juan Carlos García Ruiz

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

• The first step is to open the sample —binary file— with Radare as shown
in Figure 3, where the writing on the file capability is enabled with the ar-
gument -Aw (Allow writing) and a complete analysis is requested with the
argument -AAAA —Analyze commands, Analyze all functions, Autoname
functions, Emulate code—. This will also enable the Radare console.

Figure 3. Opening of the program with Radare
Source: own work

• Within the Radare console, the functions used by the sample are listed
using the command afl —analyze functions and list them— as shown in
Figure 4.

Figure 4. List of functions
Source: own work

10 Using Reverse Engineering to Face Malware

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

• In the list of functions, normally the main function of the program is easy
to find (even if in some cases it is under another name). The sym.main
function is highlighted in Figure 4, having the memory location on the left
side. Using the command s sym.main (seek address) it is possible to jump
to the memory location where this function is stored (Figure 5). The me-
mory position then changes from 0x000006d0 to 0x000007da (the shorter
nomenclature 0x7da will be used).

Figure 5. Change in memory location
Source: own work

• Being in the memory location of the main function [12], it is possible to
print the assembler code of that function to see the purpose behind it with
the command pdf (print disassemble function), as shown in Figure 6. In
this figure is possible to see a call to the function that is responsible for
displaying the popup window. This call is in memory position 0x7fa and the
strings used by the message are in positions 0x7e7 and 0x7ee.

Figure 6. Assembler code of sym.main function
Source: own work

11Carlos Sánchez Venegas, Camilo Aguado Bedoya, Daniel Díaz López, Juan Carlos García Ruiz

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

• Once the memory positions used in the pop-up message have been iden-
tified, it is possible to use the command wa —write opcode— to overwrite
the mov function located in 0x07e2 with a jmp function, which will serve to
skip the call to the pop-up, as is shown in Figure 7 and 8.

Figure 7. Overwriting of function mov
Source: own work

Figure 8. Assembler code of sym.main function after the overwriting
Source: own work

Once this modification on the assembler code is done, the program will not
show the pop-up window in the next execution, which will enable the sandbox to make
a malware analysis as usual.

12 Using Reverse Engineering to Face Malware

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

2.3. Case 2: Analysis of a malicious Android application
The intent of this section is to show the capacity that Radare has to develop cyber
intelligence through the Indicators of Compromise that it can extract from a malware
sample.

The first step to be able to analyze a malicious mobile application is to find
it, so different android markets currently available on the internet were reviewed in
detail. Since Google has greatly improved the security of its application marketplace
(Google Play Store) with tools such as Virus Total, it would be a more arduous task to
find a malicious mobile application in that market. Additionally, we consider it would
be very likely that because of the FIFA World Cup 2018, some cybercriminals would
intend to generate a related mobile application that looks innocent and informative but
with hidden malicious purposes. So, in order to find a malicious mobile application,
another android marketplace with a lower reputation regarding security concerns
were reviewed. One of the reviewed marketplaces was Aptoide [13] which is much
more permissive in the publication of mobile applications and therefore has a greater
probability of hosting malware applications. Aptoide hosts a mobile application (Figure
9) which at first glance looks as a very friendly application, which shows information
related to the World Cup in Russia.

Figure 9. Mobile application found in Aptoide marketplace
Source: [14]

13Carlos Sánchez Venegas, Camilo Aguado Bedoya, Daniel Díaz López, Juan Carlos García Ruiz

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

The first step to start reversing the application “World Cup 2018 Yeah! - Russia
2018” is to acquire the .APK of the application —APK is the executable of applications
for devices with Android operating system [15]—. The APK is a compressed file that
contains several files including the AndroidManifest.xml which manages all the activi-
ties, permissions and services required by the application, and the .dex class where all
the compiled code of the program is found [16]. The APK can be uncompressed with
the unzip Linux command as shown in Figure 10.

Figure 10. Extraction of the content of the APK
Source: own work

When opening the AndroidManifest.xml with a regular editor, e.g. vi Linux com-
mand, it will not be possible to obtain meaningful data (Figure 11) because the content
is in machine code.

Figure 11. Opening the AndroidManifest.xml with editor vi
Source: own work

To access the content of machine code files, e,g, AndroidManifest.xml, it is ne-
cessary to use Radare with Androguard which is a specific tool to perform reverse engi-
neering for Android applications. The command “r2pm -r axml2xml AndroidManifest.
xml” is used to access a readable version of the AndroidManifest.xml, as shown in
Figure 12. “r2pm” means that a Radare command will be executed with the help of

14 Using Reverse Engineering to Face Malware

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

a plugin, i.e. Androguard, and “-r axml2xml” means that a compiled xml file will be
converted to an uncompiled xml Android file.

Figure 12. Radare and Androguard
Source: own work

In the uncompiled AndroidManifest.xml it is possible to see some common
permissions related to goodware, e.g. access to internet, but there are also some
strange permissions [17] that are typically found in malware like installation of
packages, change of Wifi status, control over the camera or management of accounts.
The application “World Cup 2018 Yeah! - Russia 2018” have all these suspicious per-
missions [18] —marked in red box in Figure 13—; a mobile application that offer infor-
mation about the world cup does not actually need to be able to take pictures, much
less change the state of the Wifi, install packages and manage user accounts. It is also
possible to see some payment activities through PayPal, which are not common in an
application of this type. Analyzing the AndroidManifest file makes it possible to know
what an application can do and estimate the impact on the device and the user [19].

Figure 13. Reverse engineering on AndroidManifest
Source: own work

15Carlos Sánchez Venegas, Camilo Aguado Bedoya, Daniel Díaz López, Juan Carlos García Ruiz

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

Radare allows for the analysis of Imports and Exports by means of modules
such as rabin2. It also allows for the discovery of any type of hash for a given file
through the rahash2 module. Figure 14 shows some Imports related to telephony that
are included in the application “World Cup 2018 Yeah! - Russia 2018”, which execute
some unusual actions like identifying the type of phone, the state of the sim and the
telephone operator, amongst others [20].

The rest of the process of collecting Indicators of Compromise is done in the
classes.dex file. With the help of the command “rabin2 -qi clases.dex | grep -i -e
Telephony “ it becomes possible to see all imports related to telephony, where -qi
means “show a few data (q) related to imports (i)”.

Figure 14. Imports shown by rabin2
Source: own work

As seen previously, inside Radare Shell it is possible to execute commands,
change memory position, print functions, change the execution in a specific mem-
ory process, etc. One of these commands is izq, that allows the operator to see the
strings “burned” in code, this is useful in reverse engineering because it can indicate
the installation path of an apk, http or https connections and super user requests,
amongst other insights. In the case of the application “World Cup 2018 Yeah! - Russia
2018” it is possible to see how it attempts to gain access to super user commands in
order to get new permissions, additional to those found before in the AndroidManifest
file (Figure 15).

Figure 15. Strings “burned” in code
Source: own work

16 Using Reverse Engineering to Face Malware

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

This section shows how Radare generates great value for the malware analysis
in the sandbox environment since it can help to eliminate some anti-sandbox functions
whose purpose is to deceive these environments and pass themselves off as good-
ware. Later, an analysis over the mobile application “World Cup 2018 Yeah! - Russia
2018” was developed which is fundamental to generate Indicators of Compromise, so
some countermeasures can be implemented, e.g. through the creation of Yara rules,
to prevent this application, or similar ones, from getting installed on mobile devices.

3. Countermeasures Designed from
Reverse Engineering
Radare is a great tool whose purpose, as already mentioned, is to perform a deep
analysis of malware making use of reverse engineering. However, it does not guaran-
tee that the extracted information can be used in the correlation of different samples.
To solve this, it is necessary to make use of external tools that facilitate the handling of
information and help to identify the presence of a specific malware or malware family.

3.1. Yara
Yara is an open-source tool developed by the creators of VirusTotal [21], which is
a service for the analysis of malware samples and URLs. Yara is designed to help
analysts to identify and classify malware samples. With this tool it is possible to
create rules for a malware family using textual and binary patterns [22].

Yara can be integrated with different programming languages, Python being the
most common [23], to extend its use and help automate the search of Yara rules that
are related with the malware being analyzed.

Figure 16 shows an example of a Yara rule where if any of the included strings
match with the information extracted from the analyzed sample, a silent_banker mal-
ware could be identified.

17Carlos Sánchez Venegas, Camilo Aguado Bedoya, Daniel Díaz López, Juan Carlos García Ruiz

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

Figure 16. Yara rule
Source: [21]

Radare facilitates the creation of Yara rules, since through reverse engineering
it is possible to obtain Indicators of Compromise that are used to build robust and
precise rules [24].

3.2. R2Yara
R2Yara is an extension of Yara rules which uses Radare to make a better analysis of
the malware sample, since it not only consider strings detected in the sample, but it
can use all Radare commands to make more effective malware identification as seen
in Figure 17.

18 Using Reverse Engineering to Face Malware

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

Figure 17. Example of Yara rule using R2yara
Source: own work

3.3. YarGen
YarGen is an open-source tool whose main function is to create Yara rules from the
strings that are found in a malware sample. These rules are made by comparing and
ignoring strings that appear in goodware. This creation can be done with multiple
samples at once from a large database of strings that is downloaded together with the
tool, even if it is possible to create an own reference database. The multiple analysis
is a great feature since the manual rule generation can be a wasteful and slow pro-
cess. Thanks to YarGen this generation process is streamlined, however it does not
replace it, since it is necessary to clean strings that are not suitable and complement

19Carlos Sánchez Venegas, Camilo Aguado Bedoya, Daniel Díaz López, Juan Carlos García Ruiz

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

those generated rules with their own rules created using r2yara or Androguard. Thus,
YarGen becomes a great tool for malware analysts increasing their productivity with-
out compromising the quality of the Yara rules.

Figure 18. Example of Yara rule generated by yarGen
Source: own work

4. Reverse Engineering as A Tool for Law
Enforcement Agencies (Discussion)
“If you control the code, you control the world. This is the future that awaits us” [25]
is a quote which describes the daily reality of the theater of operations. The theater of
operations can be understood as a space which is no longer just a geophysical site
but a real scenario with an audience able to influence what happens on the scene
by pointing thumbs up or down, like in the Roman circus. The cyberspace is such
a theater which has become the fifth domain of war where different actors, e.g. hack-
tivists, cyberspies, hackers, governments and organizations, seek to exploit code
vulnerabilities to obtain competitive advantages, play the information —or disinfor-
mation— war, thieve industrial secrets or simply protest against something.

This reality justifies the fact that one of the most used modalities of attack is
through malware development, which is aided by benefits brought about by auto-
mation, technification and supercomputers. Specifically, the malware development is

20 Using Reverse Engineering to Face Malware

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

boosted by easy-to-use tools that can be employed by actors to create so much mal-
ware that it is estimated that tens of thousands of new variants of malware are being
created every hour (a statistic demonstrated by the cybersecurity company SonicWall
in its Report of Cyber Threats for 2018). SonicWall has registered 5.99 billion malware
attacks for the first semester of 2018, representing an increase of 102 % over the same
six-month period of 2017 [26], as seen in Figure 19.

200,000,000

400,000,000

600,000,000

800,000,000

1,000,000,000

1,200,000,000

JAN FEB MAR APR MAY JUN

2017

2018

GLOBAL MALWARE VOLUME

Figure 19. Comparison of malware in the first semester for 2017 and 2018
Source: Report of Cyber Threat 2018, SonicWall.

Considering previous facts, law enforcement agencies have been developing
capacities regarding country cyberdefense and citizen cybersecurity, which include
study of malware and intelligence of threats. One important case where these
cyberdefense and cybersecurity capabilities were tested occurred in May 2017, when
different countries in the word suffered a cyberattack due to a ransomware called
Wannacry. Wannacry encrypted all information on a computer and asked for a ransom
which should be paid in virtual currencies. Wannacry took advantage of a Windows
operating system vulnerability to attack and spread itself through the network, making
it one of the most dangerous malware for Colombia at that time and placing its
national security agencies in a difficult situation. The solution to stop this attack was
found by the cybersecurity researcher Marcus Hutchins (@malwaretechblog) who did
reverse engineering to the malware using free software tools and found that it was
communicating with a domain name that was still not registered on the internet; so
Marcus bought the name for $ 10 and stopped the attack.

21Carlos Sánchez Venegas, Camilo Aguado Bedoya, Daniel Díaz López, Juan Carlos García Ruiz

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

As seen in Figure 19, malware is a threat that has exponential growth curves
instead of linear ones, that is why it is crucial to have open source tools like Radare2
Framework, Androguard, Yara rules and yarGen, which can be applied in an effec-
tive way to reveal malware structure and operation. This information regarding the
malware possesses great utility because it supports the development of effective
countermeasures and extends the knowledge about the origin of the malicious code
and its attack vectors [27]. Recovering information from the malware is part of the field
named “threat intelligence” or “cyberintelligence”. To perform reverse engineering,
Law Enforcement Agencies, enterprises and Security Operation Centers have tradi-
tionally used commercial solutions from providers like FireEye (Sandbox AX5550),
Fortinet, Checkpoint, MacAfee o Hex-Rays (IDA PRO). That is why research such as
the one the presented in this paper, where non-commercial tools are used, allow Law
Enforcement Agencies to not only lower operating costs (without sacrificing effective-
ness compared to commercial options), but also allow analysts to transfer knowledge
that allow for the creation and customization of their own tools. The development of
cyberdefense and cybersecurity capabilities is definitely supported by the adaptation
of new cyber security tools which conduce to reaching a greater level of maturity in
the national cybersecurity or cyber defense strategy.

Malware constantly mutates, reinvents and transforms itself with the aim of
skipping or violating security controls such as sandboxes as was discussed in Section
2. Many organizations invest large amounts of money licensing sandboxes which,
as understood in the security sector, are not fully effective. This is why analysis per-
formed by seasoned cybersecurity or cyber defense analysts can be complemented
with tools like Radare to show or demonstrate evasion techniques. Radare can be used
for generating a precise analysis of a threat that shows its mechanism within a target
system and even allows for the modification of the code so that it can be detected by
a sandbox, as seen in Sections 2.2 and 2.3.

In a complementary way, Yara rules may be generated and deployed to security
devices working with correlation devices, allowing for the detection and classification
of malware in the networks of organizations which in turn, can be uploaded to help
desks or international Cybersecurity Emergency Response Teams (CERTs) thereby
mitigating damage on a larger scale.

Law Enforcement Agencies can find value in open source tools such as Radare2
in its dependencies and in its Security Operation Centers (SOC), which do not generate
excessive expenses, technological dependency to a brand nor payments for annual
licenses. Additionally, these tools allow organizations to scale up through generations
until they reach the maximum level for a SOC (4th generation), as shown in figure 20

22 Using Reverse Engineering to Face Malware

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

[28]. SOCs at 4th generation include Threat Intelligence capabilities complemented
with Threat Hunting, so that organizations or Law Enforcement Agencies can be more
proactive than reactive, have a strategy based on the anticipation of cyberthreats and
can fully comply with Colombian cybersecurity and cyber defense missions as de-
fined in document Conpes 3701.

Second
Generation

Second
Generation

Vulnerability Management
Incident Response

Capabilities

Events Correlation
Network and Syslog Log

Collection
Case Management

First
Generation

First
Generation

First
Generation

Third
Generation

Data Correlation
Big Data Security Analytics
Threat Intelligence Services

Consumption of Cloud
Security Services

Network Flow Analysis
Digital Investigation

Device Monitoring
Log Collection and Retention

Limited Device Coverage

Slow Reaction to
Security Incidents

First Generation Second Generation Third Generation FourthGeneration

Attack Sophistication

SOC Capabilities

Figure 20. The 4th generations for a SOC
Source: Security Operations Center: Building, Operating, and Maintaining your SOC.

5. Conclusions
As seen throughout the development of this paper, reverse engineering can be useful
to identify the real purposes of an application. In the same way, it can support cy-
ber intelligence processes, since it helps to discover how an application is composed
and also support the extraction of Indicators of Compromise. Radare is a reverse
engineering tool that has gained popularity because of its open source approach but
also because of its integration with some very useful modules such as Androguard,

23Carlos Sánchez Venegas, Camilo Aguado Bedoya, Daniel Díaz López, Juan Carlos García Ruiz

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

YarGen, and R2Yara. Having said that, Radare and reverse engineering are a great
complement for sandboxes and its use is highly recommended to perform static or
dynamic analysis. As future work, we plan to research around the improvement in the
automatic generation of Yara rules using YarGen. The automatic generation can be
supported with context-aware algorithms that consider features around the assets of
a specific organization like location, company name, domain names, company roles
and specific company vocabulary. In this way it will be possible to generate rules
related to addressed malware attacks. An improvement in the own YargGen algo-
rithm in charge of selecting the strings present in goodware can also be required to
decrease false positives. Additionally, we plan to work in the development of a mo-
bile application that incorporates a set of automatically updated Yara rules to analyze
applications that the user wishes to install. This application would require a version
of Radare with Androguard so it can make more advanced reversing over the down-
loaded binaries.

6. Acknowledgment
This work has been supported partially by the Colombian School of Engineering Julio
Garavito (Colombia) through the project “Cyber Security Architecture for Incident
Management”, funded by the Internal Research Opening 2017.

7. References
[1] M. Sikorski and A. Honig, “Practical Malware Analysis,” vol. 53, no. 9. No Starch Press, San

Francisco, pp. 650–652, 2012. doi: 10.1016/s1353-4858(12)70109-5

[2] K. Dunham, S. Hartman, J. Morales, M. Quintans, and T. Strazzere, “Android Malware

And Analysis.” CRC Press, p. 232, 2014.[Online]. Available: https://www.crcpress.com/

Android-Malware-and-Analysis/Dunham-Hartman-Quintans-Morales-Strazzere/p/

book/9781482252194 doi:10.1201/b17598

[3] J. J. Drake, Z. Lanier, C. Mulliner, P. Oliva, S. A. Ridley, and G. Wicherski, “Android hacker’s han-

dbook.” John Wiley & Sons, p. 577, 2014. [Online]. Available: https://www.wiley.com/en-co/

Android+Hacker%27s+Handbook-p-9781118922255

[4] Radare, “radare/radare2: unix-like reverse engineering framework and commandline tools

security.” [Online]. Available: https://github.com/radare/radare2.

24 Using Reverse Engineering to Face Malware

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

[5] E. Eilam and E. J. Chikofsky, “Reversing: Secrets of Reverse Engineering.” John Wiley

& Sons, p. 624, 2011. [Online]. Available: https://www.wiley.com/en-co/Android+

Hacker%27s+Handbook-p-9781118922255

[6] A. Singh, “Identifying Malicious code through Reverse Engineering,” vol. 44. Springer

Science & Business Media, p. 198, 2009. [Online]. Available: https://www.springer.com/la/

book/9780387098241 doi:10.1007/978-0-387-89468-3

[7] D. Oktavianto and I. Muhardianto, “Cuckoo Malware Analysis.” Packt Publishing Ltd, p.

142, 2013. [Online]. Available: https://www.packtpub.com/hardware-and-creative/cuckoo-

 malware-analysis

[8] C. Elisan, “Advanced Malware Analysis.” McGraw Hill Professional, p. 464, 2015. [Online]. Available:

https://www.mhprofessional.com/9780071819749-usa-advanced-malware-analysis-group

[9] M. Ligh, A. Case, J. Levy, and Aa. Walters, “The Art of Memory Forensics: Detecting Malware and

Threats in Windows, Linux, and Mac Memory,” vol. 1. John Wiley & Sons, p. 912, 2014. [Online].

Available: https://www.wiley.com/en-co/The+Art+of+Memory+Forensics%3A+Detecting+

Malware+ and+Threats+in+Windows%2C+Linux%2C+and+Mac+Memory-p-9781118824993

[10] D. Regalado, S. Harris, A. Harper, C. Eagle, and J. Ness, “Gray hat hacking: the ethical hac-

ker’s handbook.” McGraw Hill Professional, p. 577, 2008. [Online]. Available: https://www.

mhprofessional.com/9781260108415-usa-gray-hat-hacking-the-ethical-hackers-handbook-

fifth-edition-group doi: 10.1036/0071495681

[11] P. Shah, “Security Sandboxing for PC2: Windows Version,” California State University,

Sacramento, 2017. [Online]. Available: https://csus-dspace.calstate.edu/bitstream/hand-

le/10211.3/190565/SecuritySandboxingForPC2WindowsVersion.pdf?sequence=1

[12] C. Eagle, “The IDA Pro Book.” No Starch Press, p. 672, 2011. [Online]. Available: https://nos-

tarch.com/idapro2.htm

[13] Aptoide S.A, Aptoide | Descarga, encuentra y comparte los mejores juegos y apps para Android.

[Online]. Available: https://es.aptoide.com/.

[14] Klinnerds, “World Cup 2018 Yeah! - Russia 2018 2.2.3 Descargar APK para Android - Aptoide.”

[Online]. Available: https://world-cup-2018-yeah-russia-2018.es.aptoide.com/

25Carlos Sánchez Venegas, Camilo Aguado Bedoya, Daniel Díaz López, Juan Carlos García Ruiz

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

[15] J. Morris, “Hands-On Android UI Development: Design and develop attractive user interfaces

for Android applications.” Packt Publishing Ltd, p. 348, 2017. [Online]. Available: https://www.

packtpub.com/application-development/hands-android-ui-development

[16] N. Elenkov, “Android Security Internals: An In-Depth Guide to Android’s Security Architecture.”

No Starch Press, p. 432, 2014. [Online]. Available: https://nostarch.com/androidsecurity

[17] A. Dubkey and A. Misra, “Android Security: Attacks and Defenses.” CRC Press, p. 280, 2016.

[Online]. Available: https://www.crcpress.com/Android-Security-Attacks-and-Defenses/

Misra-Dubey/p/book/9781439896471

[18] K. Dunham, “Mobile Malware Attacks and Defense.” Syngress, p. 440, 2008. [Online].

Available: https://cdn.sonicwall.com/sonicwall.com/media/pdfs/resources/2018-snwl-cy-

ber-threat-report.pdf

[19] K. Mandia, C. Prosise, and M. Pepe, “Incident Response & Computer Forensics.” McGraw

Hill Professional, p. 624, 2014. [Online]. Available: https://www.mhprofessional.

com/9780071798686-usa-incident-response-computer-forensics-third-edition-group

[20] M. Christodorescu, S. Jha, C. Wang, D. Song, and D. Maughan, “Malware Detection.” Springer

Science & Business Media, p. 312, 2007. [Online]. Available: https://www.springer.com/la/

book/9780387327204 doi: 10.1007/978-0-387-44599-1

[21] V. Total, “YARA – VirusTotal.” [Online]. Available: https://support.virustotal.com/hc/en-us/

articles/115002178945-YARA.

[22] D. Balzarotti, M. Cova, and S. Stolfo, “Research in Attacks, Intrusions, and Defenses,” vol. 7462.

Springer, p. 400, 2012. doi: 10.1007/978-3-642-33338-5

[23] M. Spreitzenbarth and J. Uhrmann, “Mastering Python Forensics,” vol. 21. Packt Publishing

Ltd, p. 192, 2015. [Online]. Available: https://www.packtpub.com/networking-and-servers/

mastering-python-forensics

[24] J. Six, “Application Security for the Android Platform.” O’Reilly Media, p. 97, 2011. [Online].

Available: http://shop.oreilly.com/product/0636920022596.do

[25] M. Goodman, “Future Crimes: Everything Is Connected, Everyone Is Vulnerable and What We

Can Do About It.” Knopf Doubleday Publishing Group, p. 10100, 2015. [Online]. Available:

http://www.futurecrimesbook.com/

26 Using Reverse Engineering to Face Malware

Ingeniería Solidaria e-ISSN 2357-6014 / Vol. 15, n°. 2 / mayo 2019 / Bogotá D.C., Colombia
Universidad Cooperativa de Colombia

[26] T. Intelligence and I. Analysis, “2018 SonicWall Cyber Threat Report,” 2018. [Online].

Available: https://cdn.sonicwall.com/sonicwall.com/media/pdfs/resources/2018-snwl-cy-

ber-threat-report.pdf

[27] C. Abad-Aramburu, “Aplicación de metodología de Análisis de Malware al caso de estudio de

la Amenaza Avanzada Persistente (APT) ‘Octubre Rojo.’” España, p. 2, 2015. [Online]. Available:

http://reunir.unir.net/handle/123456789/2841

[28] J. Muniz, G. McIntyre, and N. AlFardan, “Security Operations Center: Building, Operating, and

Maintaining your SOC,” vol. 2. Cisco Press, p. 21, 2015. [Online]. Available: http://www.ciscopress.

com/store/security-operations-center-building-operating-and-maintaining-9780134052014

