
ISSN 2357-6014 (en línea)

BY NC ND

Ingeniería Solidaria
ISSN (en línea): 2357-6014
Vol. 14, No. 25 [special issue], May 2018
Artículo de investigación / Research article
doi: https://doi.org/10.16925/.v14i0.2229

2-Dimensional Multi-Release Software 
Reliability Modeling considering Fault 
Reduction Factor under Imperfect Debugging
Diseño de fiabilidad bidimensional del software  
de múltiples lanzamientos con base en el factor de  
reducción de fallas en la depuración imperfecta
Sameer Anand1*, Vibha Verma2, Anu Gupta Aggarwal3

	 1 University of Delhi, Delhi, India	
	 2 University of Delhi, Delhi, India	
	 3 University of Delhi, Delhi, India	

* College of Business Studies, psp Area IV, Dr. K.N. Katju Marg, Sector 16, Rohini, New Delhi, Delhi 110089, India. Email: 
sameeranand@sscbsdu.ac.in

Received on: October 23th, 2017	 Accepted on: February 22th, 2018	 Available online: May 1st, 2018

How to cite this article: S. Anand, V. Verma and A. Gupta-Aggarwal, “2-Dimensional Multi-Release Software Reliability 
Modeling considering Fault Reduction Factor under imperfect debugging”, Ing. Sol., vol. 14, no. 25 (Special issue), pp. 12, 
May 2018. doi: https://doi.org/10.16925/.v14i0.2229

Abstract
Introduction: The present research was conducted at the University of Delhi, India in 2017. 

Methods: We develop a software reliability growth model to assess the reliability of software products 
released in multiple versions under limited availability of resources and time. The Fault Reduction 
Factor (frf) is considered to be constant in imperfect debugging environments while the rate of fault 
removal is given by Delayed S-Shaped model. 

Results: The proposed model has been validated on a real life four-release dataset by carrying out 
goodness of fit analysis. Laplace trend analysis was also conducted to judge the trend exhibited by data 
with respect to change in the system’s reliability. 

Conclusions: A number of comparison criteria have been calculated to evaluate the performance of 
the proposed model relative to only time-based multi-release Software Reliability Growth Model (srgm). 

Originality: In general, the number of faults removed is not the same as the number of failures expe-
rienced in given time intervals, so the inclusion of frf in the model makes it better and more realistic. 
A paradigm shift has been observed in software development from single release to multi release 
platform.

Limitations: The proposed model can be used by software developers to take decisions regarding the 
release time for different versions, by either minimizing the development cost or maximizing the relia-
bility and determining the warranty policies.

Keywords: 2-dimensional software reliability modelling, fault reduction factor, imperfect debugging, 
multi-release, trend analysis.

https://doi.org/10.16925/.v14i0.2235
http://orcid.org/0000-0002-9694-5716
http://orcid.org/0000-0003-4868-0351
http://orcid.org/0000-0001-5448-9540
mailto:sameeranand@sscbsdu.ac.in
https://doi.org/10.16925/.v14i0.2235


BY NC ND

Research article

doi: https://doi.org/10.16925/.v14i0.2229

Diseño de fiabilidad bidimensional del software  
de múltiples lanzamientos con base en el factor de 
reducción de fallas en la depuración imperfecta
Resumen
Introducción: la presente investigación se realizó en la Universidad de Delhi, India en 2017.

Métodos: desarrollamos un modelo de crecimiento de confiabilidad de software para evaluar la confiabilidad de los 
productos de software lanzados en múltiples versiones bajo disponibilidad limitada de recursos y tiempo. El factor de 
reducción de fallas (frf) se considera una constante en entornos de depuración imperfecta, mientras que la tasa  
de eliminación de fallas está dada por el modelo de forma retardada en S.

Resultados: se valida el modelo propuesto en un conjunto de datos de cuatro lanzamientos de la vida real mediante un 
análisis de bondad de ajuste. También se aplicó el análisis de tendencia de Laplace para juzgar la tendencia que presen-
tan los datos con respecto al cambio en la confiabilidad del sistema.

Conclusiones: se calculó una serie de criterios de comparación para evaluar el rendimiento del modelo propuesto en 
relación con el modelo de crecimiento de confiabilidad del software (srgm) de múltiples lanzamientos basado únicamente 
en el tiempo.

Originalidad: en general, el número de fallas eliminadas no es el mismo que el número de fallas experimentadas en 
intervalos de tiempo determinados, por lo que la inclusión de frf en el modelo lo mejora y lo hace más realista. Se ha 
observado un cambio de paradigma en el desarrollo de software, que pasa de un lanzamiento único a una plataforma 
múltiples lanzamientos.

Limitaciones: los desarrolladores de software pueden emplear el modelo propuesto para tomar decisiones con respecto 
al tiempo de lanzar diferentes versiones, ya sea minimizando el costo de desarrollo o maximizando la confiabilidad y 
determinando las políticas de la garantía.

Palabras clave: diseño de confiabilidad de software bidimensional, factor de reducción de fallas, depuración imperfecta, 

múltiples lanzamientos, análisis de tendencias.

Design de fiabilidade bidimensional do software 
de múltiplos lançamentos tendo em conta o fator 
de redução de falhas na depuração imperfeita
Resumo
Introdução: esta pesquisa foi realizada na Universidade de Deli, na Índia, em 2017.

Métodos: desenvolvemos um modelo de crescimento de confiabilidade de software para avaliar a confiabilidade dos pro-
dutos de software lançados em múltiplas versões sob disponibilidade limitada de recursos e tempo. O fator de redução 
de falhas (frf) é considerado uma constante em contextos de depuração imperfeita, enquanto a taxa de eliminação de 
falhas é dada pelo modelo de forma retardada em S.

Resultados: o modelo proposto é avaliado em um conjunto de dados de quatro lançamentos da vida real mediante uma 
análise de bondade de ajuste. Também foi utilizada a análise de tendência de Laplace para avaliar a tendência apresen-
tada pelos dados com respeito à mudança na confiabilidade do sistema.

Conclusões: uma série de critérios de comparação foi calculada para avaliar o rendimento do modelo proposto em rela-
ção com o modelo de crescimento de confiabilidade do software (srgm) de múltiplos lançamentos baseado unicamente 
no tempo.

Originalidade: em geral, o número de falhas eliminadas não é o mesmo que o número de falhas existentes em intervalos 
de tempo determinados, sendo assim, a inclusão do frf no modelo o torna melhor e mais realista. Foi observada uma 
mudança de paradigma no desenvolvimento de software, que passa de um lançamento único a uma plataforma de 
múltiplos lançamentos.

Limitações: o modelo proposto pode ser utilizado pelos desenvolvedores de software para tomar decisões com respeito 
ao tempo de lançar diferentes versões, seja para minimizar o custo de desenvolvimento ou maximizar a confiabilidade e 
determinar as políticas de garantia.

Palavras-chave: análise de tendências, depuração imperfeita, design de confiabilidade de software bidimensional, fator 
de redução de falhas, múltiplos lançamentos.

https://doi.org/10.16925/.v14i0.2235


3 de 12doi: https://doi.org/10.16925/.v14i0.2229

1. Introduction

Quality assessment of a software product before its 
introduction in the market has become an essential 
task. The software development teams use srgm to 
assess the reliability growth of software systems 
during testing and operational phases. srgm are 
used to estimate the optimal time period for test-
ing, number of faults dormant in the system, fail-
ure intensity, development cost, etc. Organizations 
like ansi/aiaa, ibm, Motorola, Hewlett Packard, 
cisco, among others, apply and recommend srgm 
during testing and operational phases [1].

In the last few decades a number of nhpp 
based software reliability growth models have been 
proposed in literature (Goel and Okumoto [2, pp. 
3-5]; Ohba [3, pp. 3-5]; Yamada et al. [4]; Tamura 
and Yamada [5]) based on different sets of assump-
tion, e.g., perfect debugging, change point, delayed 
fault removal process, error generation, etc. In most 
of the real life software development projects, the 
debugging process may not be perfect because of 
the code’s complexity, team inefficiency, huge size 
of software, etc., and it may lead to the generation of 
errors or slowdown in fault removal rate. If debug-
ging involves error generation, then there may be 
an increase in the number of residual faults of the 
software after the debugging effort. On the other 
hand, if there is a slowdown in the fault detection 
rate (fdr) observed, a fault, upon its detection, is 
removed in multiple numbers of efforts but without 
changing the residual fault content of the software.

Another noteworthy phenomenon that may 
be observed in software development environ-
ment is the difference between the number of faults 
detected and number of faults removed during the 
given length of time. Musa [6, p. 5], [7, p. 5], [8, p. 5] 
modeled this difference by Fault Reduction Factor 
(frf) which was defined as the total number of 
faults removed in proportion to the total number 
of failures experienced during testing. Musa rep-
resented frf by a constant (Musa‘s basic execution 
time model) which can be negative, between 0 and 
1 or greater than 1. According to Musa, the value of 
frf depends on a number of environmental factors 
such as severity of faults, the type of testing tech-
niques/tools employed, skills of the man-power 
involved etc. 

In extant software reliability literature, frf 
has been incorporated in multi-release reliability 
growth modeling. Rapid developments in hardware 

Though new releases are made to keep pace 
with development and dynamics of customer 
needs, it may also result in spite of the failure rate 
and fault content of the software system. Therefore, 
the quality maintenance of a multi-release soft-
ware is a critical task for the developers as they 
have to accomplish such development under time 
and resources constraints. In this paper we propose 
an frf based two-dimensional Delayed S-Shaped 
srgm for a multi-release software system under 
imperfect debugging. We have validated the pro-
posed model on Wood’s 2-D Multi-Release dataset 
collected for Tandem computers. Laplace [9] trend 
analysis on this data has been carried out to analyse 
if the model is appropriate to fit the data. Parameter 
estimation using non-linear least square estima-
tion was done in spss. 

This article is organized as follows: Section 1 
provides an overview of the related work. Section 2 
offers a detailed description of the proposed model. 
In section 3 the reliability trend of dataset is tested 
using Laplace trend analysis. The parameter esti-
mation and model validation is found in Section 4. 
Finally, section 5 offers conclusions.

and conductive economic conditions have forced 
the firms to continuously innovate and upgrade 
their products so as to maintain their market pres-
ence and beat competition. Software companies 
update their products by extending the function-
alities of their current product along with the new 
features. Some of the major reasons for the multi-
ple versions of a software system have been high-
lighted in Fig. 1.

Fig. 1. Need for multiple versions of software product
Reference: the authors

New features requirement to
accomplish a given task in

competitive markets

Issues related to previous
versions, like reducing security risks

Hardware upgrades require
new update software

Companies’ policies to strictly
govern software deployment



4 de 12 Research article / Ingeniería Solidaria / Volume 14/ Number 25 (Special issue) / May 2018

2. Related Work 

srgms: Goel-Okumoto Model [2, p. 1] is one of the 
initial srgms which considered the exponential 
nature of the failure process and the homogeneity 
of the faults. Few years later Ohba [3, p. 1] proposed 
an inflexion S-shaped model under the assump-
tion of two types of faults, namely independent 
and dependent faults. In the same year, Yamada 
et al. [10, pp. 4-5] developed the model to repre-
sent time delay between fault removal and failure 
observation.

Yamada’s Delayed S-Shaped Model for sin-
gle Release: This model depicts S-Shaped curves for 
fault removal implying improvement in the testing 
efficiency/learning of the team. It was presented by 
Yamada [10, p. 5] under the assumption that there 
is a time difference between fault detection and 
correction. At first the rate of failure increases, but 
there is a decrease in the failure rate later suggest-
ing a learning phenomenon. The mean values func-
tion (mvf) for this model is:

m(t) = a(1 – (1 + bt)e–bt (1)

where a is the number of faults present in the 
software initially, b is the rate of fault removal.

Multi-Release srgm: Release of software sys-
tems in multiple versions has been necessary to 
respond to the complexity of real life applications, 
rapid technological advancements, risk associated 
with the development of a new product and con-
straint on availability of manpower and delivery 
time. Releasing software with different versions 
helps to retain and attract potential customers. 
The coding done for new features development and 
enhancement of existing features leads to the gen-
eration of faults. Kapur et al. [11] developed srgm 
for a software product with four releases to incor-
porate the upgrades made during each release. 

The mathematical formula of mvf for each 
release is given as:

(2)111 )( Fatm = 10 tt ≤≤

(3)
)(

))(1()()(

12

1111222

ttF
tFattFatm

−
−+−=

21 ttt <≤

(4)
)())(1()()( 332222333 ttFtFattFatm −−+−=

32 ttt ≤≤)())(1))((1( 2322111 ttFtFtFa −−−+

(5)
)())(1))((1))(( 34332211 ttFtFtFtF −−−

1(1a −

)())(1()()( 343333444 ttFtFattFatm +−−+−=

)())(1))((1( 3433222 ttFtFtFa −−− +

43 ttt ≤≤

where ai is the initial fault content and Fi(.) is 
the Failure time cdf for the ith release. 

Two-dimensional srgm: Most of the srgms 
have been developed considering the software fail-
ure process to be dependent on testing time (Goel 
et. al. [2, pp. 1, 3]; Ohba [3, pp. 1, 3]; Yamada [10, 
p. 5]) or testing resource consumption (Yamada 
et al. [12], Kapur et al. [13]). In recent years Ishii 
and Dohi [14] proposed a 2-D srgm and validated 
their model on 2-time scales. Inoue and Yamada 
[15] proposed a reliability assessment method using 
2-D Weibull srgm. Kapur et al. [16, p. 6] used 2-D 
Multi-Release framework to release the planning of 
a software product. 

frf: The concept of frf is based upon the fact 
that number of faults removed need not be the same 
as number of failures experienced in a given inter-
val of time. Musa [6, p. 2], [7, p. 2], [8, p. 2] intro-
duced the concept of frf to distinguish between 
fault and failure. According to him frf can be 
expressed as:

FRF = Number of faults removed/ Number  
         of failures experienced

(6)

Under Musa’s perspective, “frf is usually pos-
itive and less than one but it can be negative or zero. 
It can be greater than one in the case of finding the 
fault that produced a particular failure that resulted 
in removal of other faults as well.” 

Hsu et al. [17] proposed srgm by considering 
time variable frf that depicts increasing, decreas-
ing and constant patterns. The general model is 
defined as:

(7)))  where()(()( tmatb
dt

tdm −= )()( tbftb =



5 de 12doi: https://doi.org/10.16925/.v14i0.2229

mvf for different patterns depicted by frf due 
to the effect of environmental factors are:

a) Constant pattern

(8)ftf =)(   10 ≤< f  and )1()( fbteatm −−=     

b) Increasing pattern

(9)

bteftf −−−= )1(1)( 0     and 














−=










 −−
−

−

b
ef

b
bt

eatm

)
0 1)(1(

1)(

c) Decreasing pattern

(10)bteftf −= 0)(       and 













−=










 −
−

−

b
ef

b
bt

eatm
)1(0

1)(   

where  and  represent frf and fdr respectively

Later on Pachauri et al. [18] described frf 
as inflexion S-Shaped function for a multi-release 
software system. Chatterjee et al. [19] formulated 
the Weibull-type frf under perfect and imperfect 
debugging process. Aggrawal et al. [20] proposed 
a multi release growth model with exponentiated 
Weibull frf and change point under imperfect 
debugging. 

Imperfect debugging: It was first proposed 
by Goel [21]. He extended Jelinski and Moranda 
Model [22] by assuming that error may be gener-
ated during the faults removal process. Kapur et al. 
[23] proposed a unified framework for srgm under 
two types of imperfect debugging. Jain et al. [24] 
integrated the concept of frf and imperfect debug-
ging in exponential srgm. Chatterjee et al. [25] pro-
posed an srgm under imperfect debugging and frf 
as a Weibull function. The objective of our paper 
is to present a general model that can deal with all 
these factors simultaneously, so that the modeling 
done becomes more realistic and helps to fit data 
more accurately. 

The proposed model is based on the following 
assumptions:

1.	 Fault removal process follows nhpp.
2.	 Each and every fault remaining in the software 

affects the failure rate.
3.	 There is a finite number of faults in the system.
4.	 Fault removal process is represented by Delayed 

S-Shaped model.
5.	 A fault is removed after its detection but it may 

lead to the generation of more faults.
6.	 There is a difference between the number of 

faults removed and the number of faults detec-
ted in a given interval of time.

3. Proposed Modeling Framework

The reliability growth model proposed in this 
paper is two-dimensional in nature; it includes 
testing time and amount of testing resources con-
sumed. Cobb-Douglas production function (Fig. 2) 
is used to represent the combined effect of time and 
resources on the fault removal process  [16, p. 5].

The Cobb-Douglas function is mathemati-
cally given as:

(11)eetCIO −= 1
21

where O = The output produced; I1 I2 is the 
amount of two inputs used; e = first input’s elastic-
ity and C is the productivity factor.

Fig . 2. Cobb-Douglas production function with two inputs
Reference: the authors

O
ut

pu
t

6

5

4

3

2

1

0
3

3
2

2
1 1

0 0

Input 1 Input 2



6 de 12 Research article / Ingeniería Solidaria / Volume 14/ Number 25 (Special issue) / May 2018

7.	 The joint effect of time and resources on the ex-
pected number of faults removed is represented 
by Cobb-Douglas function given as follows:

(12)eert −≅ 1ψ   10 ≤≤ e

where t represents length of time spent on test-
ing and r represents the amount of testing resource 
spent during testing.

Using the above mentioned assumptions we 
obtain the following differential equation for the 
change in cumulative number of faults removed:

(13)))()((
1

)(
2

' ψψ
ψ

ψψ mlma
b

bfm −+
+

=
 

where l is the rate of error generation,  
f is fault reduction factor, b is fault detection rate 
and m(ψ) is the expected number of faults removed 
after spending t time and r amount of resources.

Solving the equation (13) using initial condi-
tions m(ψ) = 0 atψ = 0 we get,

(14)( )( )ψψψ )1()1(11
1

)( lbflf eb
l

am −−−+−
−

=

Using (12) and (14) we get:

(15)( )( )eertlbflfee erbt
l

artm
−−−−−+−

−
=

1)1()1(111
1

),(

This can also be written as 

(16)),(
1

),( rtF
l

artm
−

=

where

( )( )eertlbflfee erbtrtF
−−−−−+−=

1)1()1(111),(

Now we model the fault removal process for a 
multi-release software.

First Release: At the time of the first release, 
a product is introduced in the market for the first 
time. Before entering the market, the development 
team test the software rigorously so as to remove 
maximum possible faults from the software sys-
tem. But due to market competition, which bounds 
the team with time and cost constraints, it becomes 
almost impossible for the team to remove all the 
faults before the first release. The faults which 
remain undetected even after testing are taken care 
off in the next version. Mathematically the faults 
removal for the first release may be represented as:

(17))()( 1
*
11 ψψ Fam = 10 ψψ <≤

where  
1

1*
1 1 l

aa
−

=   and

( )( )ψψψ )1()1(
11

1111111)( lfblf ebF −−−+−= (ψ is as 
given by expression (12))

Second Release: After releasing the first ver-
sion, firms need to develop newer versions so as 
to remain competitive in the market. If a software 
firm does not do so, then in spite of a great response 
for the first version, the product may become obso-
lete due to technological advancements and the 
firm may lose its market share. The second ver-
sion is launched with some additional features and 
enhanced functionalities. During its testing efforts 
are made to detect and remove the faults due to 
new features as well as the left over faults of the first 
release. The number of cumulative faults removed 
during this release is given as:

(18)
)()))((()( 1211

*
1

*
22 ψψψψ −−+= Fmaam

21 ψψψ ≤≤  

where  
2

2*
2 1 l

aa
−

=   and

( )( )ψψψ )1()1(
22

2222211)( lfblf ebF −−−+−=

Future Releases: In the same manner we can 
express the mvf for next n releases.



7 de 12doi: https://doi.org/10.16925/.v14i0.2229

(19)
)()))((()( 2322

*
2

*
33 ψψψψ −−+= Fmaam

32 ψψψ ≤≤  

(20)
)()))((()( 3433

*
3

*
44 ψψψψ −−+= Fmaam

43 ψψψ ≤≤  

(21)
)()))((()( 111

*
1

*
−−−− −−+= nnnnnnn Fmaam ψψψψ

nn ψψψ ≤≤−1           

4. Trend Analysis

In this section we will analyse the reliability trend 
of data set using Laplace Trend analysis. The aim 
is to find if the developed srgm is appropriate for 
the dataset. Trend basically refers to either increase 
or decrease in reliability as the testing progresses. 
Several methods like the graphical approach by 
Asher et al. [26] or the analytical method used  
by Kanoun [27] exist for performing trend analy-
sis. But Laplace’s trend test proposed by Asher et 
al. [28],  Cox et al. [29], and extended by Kanoun 
[27] is widely used for the determination of trends. 
The method involves computing the Laplace factor 
for each time unit to observe the trend with testing 
increasing time. The Laplace factor is given as:

(22)
∑

∑∑

=

=

−

−−−
=

ψ

ψψ

ψ

ψ

ψ

1

2

1

)(
12

1

)(
2

1)()1(
)(

i

ii

in

inini
h

where n(i) is the failure during ψi(
th
it  time unit 

and  th
ir  resource consumption).

The interpretation of Laplace factor is shown 
in Table 1. We have calculated the Laplace factor for 
each of the releases and plotted this against time to 
observe the trend. Fig. 3 shows Laplace trend anal-
ysis plots and Table 2 shows the Laplace factor for 
each release at the end of the testing period. All the 
releases show either stability or growth in reliabil-
ity i.e. due to rigorous testing and fault removal 
the reliability is increasing and becomes stable. 
This shows the human learning phenomenon and 
is captured by S-Shaped curves. Hence the data is 
accurate for the proposed srgm, its’ failure curve is 
S-Shaped. We have also done a graphical represen-
tation of reliability growth for each of the releases 
(Fig. 3). Therefore, it is appropriate to use Delayed 
S-Shaped Model for representing the fault removal 
process.

Table 1. Laplace factor Interpretation

Laplace Factor Value Interpretation

Negative Reliability growth

Positive Reliability decrease

Between -2 and 2 Stable reliability

Reference: the authors

Reference: the authors

Release Testing Time Resource  
Consumption Laplace factor Reliability Trend

1 20 10000 -3.96947 Growth

2 19 10272 -2.34446 Growth

3 12 5053 -1.64044 Stable

4 19 11305 -1.38162 Stable

Table 2. Laplace factor for each release and its trend

5. Model Validation

A srgm is important only if it can be validated on 
actual failure data of software and its parameters 



8 de 12 Research article / Ingeniería Solidaria / Volume 14/ Number 25 (Special issue) / May 2018

can be estimated with considerable accuracy and 
goodness of fit. The proposed model is validated 
on Tandem computers dataset in which the faults 
for four releases were recorded with respect to time 
and resources spent. The dataset shows that during 
the first release, 100 faults were removed when 
tested for 20 weeks using 10 000 units of resources 
consumption. 120 faults were observed in second 
release after 19 weeks of testing and the application 
of 10 272 unit’s resources while the third release was 
subjected to testing for 12 weeks using 5 053 units 
of resources and 61 faults were reported. Similarly, 
in the fourth release 11 305 unit resources were 
applied for 19 weeks resulting in 42 bugs.

The parameters have been estimated using the 
nlls (Non-Linear Least Square) in spss (Statistical 
Package for Social Sciences). The values of the 
parameters estimated for the first release were used 
for parameter estimation of the second release. The 
faults that remained undetected during testing of 
the first release were added to the fault content of the 
second release. In the same manner we have esti-
mated the parameters for subsequent releases. The 
estimated parameter values are shown in Table 3.

Fig . 3. Reliability Trend for Four Release Dataset
Reference: the authors

Table 3. Parameter estimates

Release a b l e f

1 106.901 0.159 0.173 0.248 0.006

2 120.002 0.213 0.257 0.247 0.003

3 60.989 0.069 0.021 0.355 0.021

4 39.786 0.067 0.021 0.589 0.090

The surface curves for estimated values for 
number of faults removed corresponding to num-
ber of faults removed during different releases are 
shown given in Fig. 4 (x-axis represents time and 
y-axis represent resource consumption).

To verify the relative advantage provided by 
the 2-dimensional modeling scheme over only time 
based models we estimated the parameters again 
by substituting e = 0 in the expression (12). Table 
4 shows the values of performance criteria for 1-D 
(only time dependent) model and 2-D (both time 
and resource dependent) model respectively. This 

Reference: the authors

0.5

0

-0.5

-1

1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 2010

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

La
pl

ac
e 

Fa
ct

or

Release 1

7

6

5

4

1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 1910

3

2

1

0

-1

-2

-3

La
pl

ac
e 

Fa
ct

or

Release 2

5

4

1 2 3 4 5 6 7 8 9 11 1210

3

2

1

0

-1

-2

La
pl

ac
e 

Fa
ct

or

Release 3

3.5

3
2.5

2

1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 1910

1.5

1
0.5

0
-0.5

-1

-1.5
-2

La
pl

ac
e 

Fa
ct

or

Release 4



9 de 12doi: https://doi.org/10.16925/.v14i0.2229

from other values. We plotted boxplot for the abso-
lute residuals obtained after predicting faults using 
the proposed model. (Fig. 5)

Wider boxplot (Release 3) represents the 
spread in the data with larger extreme values, i.e. 
difference in observed and predicted faults is more 
than the compact ones (Release 1, 2, 4); these repre-
sent the concentration of data, i.e. the observed and 
predicted values are closer to each other. Spread  
and compactness of boxplot shows the distance of 
residual from the mean residual value. Higher value 
of residual implies that there are more mismatches 
between the estimated and fault predicted using 
the proposed model and vice-versa. Right-skewed 
(Release 2 and 3) implies data is concentrated at 
the lower end while Left- skewed (Release 1 and 4) 
boxplot concentration of data is at the upper end. 
Concentration of residual at lower end implies that 
most of the predicted values are near to the esti-
mated bugs. We can also observe outliers in release 
1, 2 and 4. So we can conclude that the model fits 
best for release 1, 2 and 4 but less for the release 3.

Fig. 4.  Estimated values for m(t, r) different releases
Reference: the authors

table includes the values of comparison criteria 
namely mean square error (mse), Predictive Ratio 
Risk (prr), Predictive power (pp) and Coefficient of 
determination (R2). For the first three criteria the 
dataset is said to fit the model better if the values are 
lower. But it is not the case of R2. Higher values of R2 
indicate a better fit of the model while smaller values 
imply the failure of model in explaining the varia-
tions in the data or a poor fit. Since mse is sensitive 
to the outliers in the dataset, we have also used some 
other performance indicators like Mean Absolute 
percentage error (mape) and Mean Absolute Scaled 
error (mase) to evaluate model performance. For 
these criteria smaller values also represent a better 
fit of the data.

Boxplot representation of dataset for the model 
will clear the preference of the proposed model for 
estimating the number of faults removed in a soft-
ware system. Boxplot divides the data into quartiles 
and helps understand the spread as well as concen-
tration of data. Apart from this we can easily iden-
tify the outliers i.e. the data values that are far away 

Release 1

Release 3

Release 2

Release 4



10 de 12 Research article / Ingeniería Solidaria / Volume 14/ Number 25 (Special issue) / May 2018

Release Model R2 mse prr pp mape mase

1
Time-Dependent Model 0.977 18.654 45.039 16.106 21.417 0.639

Proposed Model 0.989 8.89 9.914 6.424 8.247 0.486

2
Time-Dependent Model 0.991 12.345 25.533 10.428 17.508 0.456

Proposed Model 0.996 5.412 5.159 3.829 6.391 0.298

3
Time-Dependent Model 0.980 8.498 6.826 4.903 17.268 0.525

Proposed Model 0.996 1.749 1.720 1.291 7.138 0.180

4
Time-Dependent Model 0.990 1.421 2.679 2.761 11.208 0.493

Proposed Model 0.991 1.294 2.211 2.604 11.181 0.492

Table 4. Comparison using performance criteria

Reference: the authors

Fig. 5.  Boxplot of absolute residuals using Least Square Estimation 
Reference: the authors

o3

o5

2

2.5

1.5

1

0.5

0

Re
si

du
al

2

2.5

3

1.5

1

0.5

0

Re
si

du
al

8

6

4

o1

o2

o8

2

0

Re
si

du
al

4

5

6

3

2

5o1o

1

0

Re
si

du
al



11 de 12doi: https://doi.org/10.16925/.v14i0.2229

6. Conclusions

In this paper we have proposed a 2-Dimensional 
modeling scheme based on Fault Reduction Factor. 
frf is assumed to be a constant while fault removal 
rate is represented by Delayed S-Shaped model 
under imperfect environment. The proposed 
scheme is meant for software systems with multi-
ple versions. A numerical study has been carried 
out to validate the model with respect to a four-re-
lease dataset. Comparisons have been drawn 
between the proposed two-dimensional model and 
only time-based model in terms of number of cri-
teria, namely R2, mse, prr, pp, mape and mase. The 
proposed model may be used by software product 
planners to decide about optimal time to launch 
different versions or to decide about warranty 
policies. The work presented in this paper may be 
extended to determine optimal maintenance poli-
cies for a software system.

References

[1]	 S. Yamada, Software Reliability Modelling: Funda-
mentals and applications, Japan: Springer, 2014.

[2]	 A. L. Goel and K. Okumoto, “Time Dependent 
Error Detection Rate Model for Software Reliability 
and Other Performance Measures”, ieee Transac-
tions on Reliability, vol. 28, no. 3, pp. 206-211, 1979. 
doi: https:///doi.org/10.1109/TR.1979.5220566

[3]	 M. Obha, “Software Reliability Analysis Models”, 
ibm Journal of Research and Development, vol. 28, no. 
4, pp. 428-443, 1984. doi: https://doi.org/10.1147/
rd.284.0428

[4]	 S. Yamada, K. Tokuno, and S. Osaki, “Imperfect de-
bugging models with fault introduction rate for sof-
tware reliability assessment”, International Journal of 
Systems Science, vol. 23, no. 12, pp. 2241-2252, 1992. 
doi: https://doi.org/10.1080/00207729208949452

[5]	 Y. Tamura and S. Yamada, “A flexible stochastic 
differential equation model in distributed develop-
ment environment”, European Journal of Operatio-
nal Research, vol. 1, no. 168, pp. 143.152, 2006. doi:  
https://doi.org/10.1016/j.ejor.2004.04.034

[6]	 J. D. Musa, “A theory of software reliability and its 
application”, ieee Transactions on Software Enginee-
ring, vol. se-1, no. 3, pp. 312-327, 1975.

[7]	 J. D. Musa, A. Iannino, and K. Okumoto, Software 
Reliability: Measurement, Prediction, Application, 
Texas: McGraw-Hill, 1987.

[8]	 J. D. Musa, Software Reliability Engineering: More 
Reliable Software, Faster and Cheaper, 2nd ed.,  
Bloomington: Authorhouse, 2004.

[9]	 A. Wood, “Predicting Software Reliability”, ieee 
Computers, vol. 29, no. 11, pp. 69-77, 1996. doi: ht-
tps://doi.org/10.1109/2.544240

[10]	 M. Ohba and S. Yamada, “S-shaped Software Re-
liability Growth Model”, Proceedings of the 4th 
International Conference on Reliability and Main-
tainability, pp. 430-436, 1984. doi: https://doi.
org/10.1109/TR.1983.5221735

[11]	 P. K. Kapur, A. Tandon, and G. Kaur, “Multi Upgrada-
tion Software Reliability model”, in ieee Proceedings 
of 2nd International Conference on Reliability, Safety 
and Hazard, December 14-16, pp. 478-474, 2010. 
doi: https://doi.org/10.1109/ICRESH.2010.5779595

[12]	 S. Yamada, H. Ohtera, and H. Narihisa, “Software 
Reliability growth models with testing-effort”, ieee 
Transactions on Reliability, R-35, pp-19-23, 1986. 
doi: https://doi.org/10.1109/TR.1986.4335332

[13]	 P. K. Kapur, A. G. Aggarwal and G. Kaur, “Testing 
Resource dependent Flexible reliability growth mo-
del for software with multiple releases”, in Internatio-
nal Conference on Development and Applications is 
Statistics in Emerging Areas of Science and Technolo-
gy (icdaseast 2010), Jammu, India, 8-10 Dec 2010. 

[14]	 T. Ishii and T. Dohi, “Two-Dimensional Software 
Reliability Models and Their Application,” Procee-
dings 12th Pacific Rim International Symposium De-
pendable Computing, pp. 3-10, 2006. doi: https://doi.
org/10.1109/PRDC.2006.64

[15]	 S. Inoue and S. Yamada, “Two-Dimensional Softwa-
re Reliability Measurement Technologies”, in Pro-
ceedings of ieee, 2009. doi: https://doi.org/10.1109/
IEEM.2009.5373378

[16]	 P. K. Kapur, H. Pham, A. G. Aggarwal, and G. 
Kaur, “Two Dimensional Multi-Release Software 
Reliability Modeling and Optimal Release Plan-
ning”, ieee Transactions on Reliability, vol. 61, no. 
3, pp. 758-768, 2012. doi: https://doi.org/10.1109/
TR.2012.2207531

[17]	 C. J. Hsu, C. Y. Huang, and J. R. Chang, “Enhancing 
software reliability modeling and prediction throu-
gh the introduction of time variable fault reduction 
factor”, Applied Mathematical Modelling, vol. 35, no. 
1, pp. 506-521, 2011. doi: https://doi.org/10.1016/j.
apm.2010.07.017

[18]	 B. Pachauri, J. Dhar, and A. Kumar, “Incorporating 
inflection S-shaped fault reduction factor to enhan-
ce software reliability growth”, Applied Mathematical 
Modeling, vol. 39, no. 5, pp. 1463–1469, 2014. doi: 
https://doi.org/10.1016/j.apm.2014.08.006

https://doi.org/10.1109/TR.1979.5220566
https://doi.org/10.1147/rd.284.0428
https://doi.org/10.1147/rd.284.0428
https://doi.org/10.1080/00207729208949452
https://doi.org/10.1016/j.ejor.2004.04.034
https://doi.org/10.1109/2.544240
https://doi.org/10.1109/TR.1983.5221735
https://doi.org/10.1109/ICRESH.2010.5779595
https://doi.org/10.1109/TR.1986.4335332
https://doi.org/10.1109/PRDC.2006.64
https://doi.org/10.1109/IEEM.2009.5373378
https://doi.org/10.1109/IEEM.2009.5373378
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6289428
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6289428
https://doi.org/10.1109/TR.2012.2207531
https://doi.org/10.1109/TR.2012.2207531
https://doi.org/10.1016/j.apm.2014.08.006


12 de 12 Research article / Ingeniería Solidaria / Volume 14/ Number 25 (Special issue) / May 2018

[19]	 S. Chatterjee and A. Shukla, “Modelling and analy-
sis of software fault detection and correction process 
through Weibull type frf, Change point and Imper-
fect Debugging”, Arab Journal of Science and Engi-
neering, vol. 41, pp. 5009-5025, 2016. doi: https://
doi.org/10.1007/s13369-016-2189-0

[20]	 A. G. Aggarwal, V. Dhaka, and N. Nijhawan, “Re-
liability analysis for multi-release open-source sof-
tware systems with change point and exponentiated 
Weibull fault reduction factor”, Life cycle Reliability 
safety engineering, vol. 6, no. 1, pp. 3-14, 2017. doi: 
https://doi.org/10.1007/s41872-017-0001-0

[21]	 A. L. Goel, “Software reliability models: assumptions, 
limitations and applicability” ieee Transactions on 
Software Engineering, vol. 11, no. 12, pp. 1411-1423, 
1985. doi: https://doi.org/10.1109/TSE.1985.232177

[22]	 Z. Jelinski and P. Moranda, “Software reliability re-
search”, Statistical Computer Performance Evalua-
tion, New York: Academic Press, 1972, pp. 465-484. 
doi: https://doi.org/10.1016/B978-0-12-266950-
7.50028-1

[23]	 P. K. Kapur, H. Pham, S. Anand, and K. Yadav, “A 
unified approach for developing software reliability 
growth models in the presence of imperfect debu-
gging and error generation” ieee Trans. Reliability, 
vol. 60, no. 1, pp. 331-340, 2011. doi: https://doi.
org/10.1109/TR.2010.2103590

[24]	 M. Jain, T. Manjula, and T. R. Gulati, “Software 
Reliability Growth Model (srgm) with Imperfect 

Debugging, Fault Reduction Factor and Multiple 
Change-Point”, in Proceedings of the International 
Conference on SocProS, aisc 131, pp. 1027-1037, 
2012. doi: https://doi.org/10.1007/978-81-322-
0491-6_95

[25]	 S. Chatterjee and J. B. Singh, “A nhpp based sof-
tware reliability model and optimal release policy 
with Logistic-Exponential test coverage under im-
perfect debugging”, International Journal on System 
Assurance Engineering and Management, vol. 5, no. 
3, pp. 399-406, 2014. doi: https://doi.org/10.1007/
s13198-013-0181-6

[26]	 H. Ascher, “Regression Analysis of Repairable Sys-
tems Reliability”, Electronic Systems Effectiveness 
and Life Cycle Costing, vol. 3, pp. 119-130, 1983. 
doi: https://doi.org/10.1007/978-3-642-82014-4_8

[27]	 K. Kanoun, “Software dependability growth cha-
racterization, modeling and evaluation,” Doctorate 
es-Sciences dissertation, Institute National Polyte-
chnique de Toulouse, France, laas Reo. 89-320, 
Sept. 1989.

[28]	 H. Ascher and H. Feingold, “Application of Laplace’s 
test to repairable system reliability,” in Proceedings of 
1st International conference on Reliability and Main-
tainability, Paris, France, June 19-23, pp. 219-225, 
1978.

[29]	 D. R. Cox and P. A. Lewis, The Statistical Analysis of 
Series of Events, London: Chapman & Hall, 1978.

https://doi.org/10.1109/TSE.1985.232177
https://doi.org/10.1016/B978-0-12-266950-7.50028-1
https://doi.org/10.1016/B978-0-12-266950-7.50028-1
https://doi.org/10.1109/TR.2010.2103590
https://doi.org/10.1007/s13198-013-0181-6
https://doi.org/10.1007/s13198-013-0181-6

